
Optimizing Program
Performance

Capabilities and Limitations of Optimizing Compilers 379

Expressing Program Performance 382

Program Example 384

Eliminating Loop Inefficiencies 387

Reducing Procedure Calls 391

Eliminating Unneeded Memory References 393

Understanding Modern Processors 395

Reducing Loop Overhead 408

Converting to Pointer Code 41 2

Enhancing Parallelism 41 5

Putting it Together: Summary of Results for Optimizing Combining Code 423

Branch Prediction and Misprediction Penalties 425

Understanding Memory Performance 429

Life in the Real World: Performance Improvement Techniques 436

Identifying and Eliminating Performance Bottlenecks 437

Summary 444

378 Chapter 5 Optimizing Program Performance

Writing an efficient program requires two types of activities. First, we must select
the best set of algorithms and data structures. Second, we must write source
code that the compiler can effectively optimize to turn into efficient executable
code. For this second part, it is important to understand the capabilities and
limitations of optimizing compilers. Seemingly minor changes in how a program
is written can make large differences in how well a compiler can optimize it. some
programming languages are more easily optimized than others. Some features of
C,such as the ability to perform pointer arithmeticand casting, makeit challenging
to optimize. Programmers can often write their programs in ways that make it
easier for compilers to generate efficient code.

In approaching program development and optimization, we must consider
how the code will be used and what critical factors affect it. In general, program-
mers must make a trade-off between how easy a program is to implement and
maintain, and how fast it will run. At an algorithmic level, a simple insertion sort
can be programmed in a matter of minutes, whereas a highly efficient sort routine
may take a day or more to implement and optimize. At the coding level, many
low-level optimizations tend to reduce code readability and modularity, making
the programs more susceptible to bugs and more difficult to modify or extend.
For aprogram that will be run only once to generate a set of data points, it is more
important to write it in a way that minimizes programming effort and ensures
correctness. For code that will be executed repeatedly in a performance-critical
environment, such as in a network router, much more extensive optimization
usually is appropriate.

In this chapter, we describe a number of techniques for improving code per-
formance. Ideally, a compiler would be able to take whatever code we write and
generate the most efficient possible machine-level program having the specified
behavior. In reality, compilers can only perform limited transformations of the
program, and they can be thwarted by optimization blockers-aspects of the pro-
gram's behavior that depend strongly on the execution environment. Program-
mers must assist the compiler by writing code that can be optimized readily. En the
compiler literature, optimization techniques are classified as either "machine inde-
pendent," which means they should be applied regardless of the characteristics of
the computer that willexecute the code, or as "machine dependent," which means
they depend on many low-level details of the machine. We organize our presen-
tation along similar lines, starting with program transformations that should be
standard practice when writing any program. We then progress to transformations
whose efficacy depends on the characteristics of the target machine and compiler.
These transformations also tend to reduce the modularity and readability of the
code and thus should be applied when maximum performance is the dominant
concern.

To maximize the performance of a program, both the programmer and the
compiler need to have a model of the target machine specifying how instructions
are processed and the timing characteristics of the different operations. For ex-
ample, the compiler must know timing information to be able to decide whether
it should use a multiply instruction or some combination of shifts and adds. Mod-

Section 5.1 Capabilities and Limitations of Optimizing Compilers 379

em computers use sophisticated techniques to process a machine-level program,
executing many instructions in parallel and possibly in a different order than they
appear in the program. Programmers must understand how these processors work
to be able to tune their programs for maximum speed. We present a high-level
model of such a machine based on some recent models of Intel processors. We
also devise a graphical notation that can be used to visualize the execution of
instructions by the processor and to predict program performance.

We conclude the chapter by discussing issues related to optimizing large pro-
grams. We describe the use of codeprofilers-tools that measure the performance
of different parts of a program. This analysis can help find inefficiencies in the
code and identify the parts of the program we should focus on in our optimization
efforts. Finally, we present an important observation, known as Amdahl's law,
which quantifies the overall effect of optimizing some portion of a system.

In this presentation, we make code optimization look like a simple linear
process of applying a series of transformations to the code in a particular order.
In fact, the task is not nearly so straightforward. A fair amount of trial-and-
error experimentation is required. This is especially true as we approach the later
optimization stages, where seemingly small changes can cause major changes in
performance, while some very promising techniques prove ineffective. As we
will see in the examples that follow, it can be difficult to explain exactly why a
particular code sequence has aparticular execution time. Performance can depend
on many detailed features of the processor design for which we have relatively
little documentation or understanding. This is another reason to try a number of
different variations and combinations of techniques.

Studying the assembly code is one of the most effective means of gaining
some understanding of the compiler and how the generated code will run. A good
strategy is to start by looking carefully at the code for the inner loops. One can
identify performance-reducing attributes, such as excessive memory references
and poor use of registers. Starting with the assembly code, we can even predict
what operations will be performed in parallel and how well they will use the
processor resources.

5.1 Capabilities and Limitations of Optimizing Compilers

Modern compilers employ sophisticated algorithms to determine what values are
computed in a program and how they are used. They can then exploit opportuni- - -

ties to simplify expressions, to use a single computation in several different places,
and to reduce the number of times a eiven com~utation must be performed. The u

ability of compilers to optimize programs is limited by several factors, includ-
ing: (1) the requirement that they should never alter correct program behavior,
(2) theu limited understanding of the program's behavior and the environment in
which it will be used, and (3) the need to perform compilation quickly.

Compiler optimization is supposed to be invisible to the user. When a pro-
; grammer compiles code with optimization enabled (e.g.. using the -0 command

line option), the code should have identical behavior to when it is compiled 0th- i

380 Chapter 5 Optimizing Program Performance

erwise, except that it should run faster. This requirement restricts the ability of
the compiler to perform some types of optimizations.

Consider, for example, the following two procedures:

1 void twiddlel(int *xp, int *yp)
2 I
3 *xp += *yp;
4 *xp += *yp;
5 1
6
7 void twiddle2(int *xp, int *yp)
8 I
9 * xp += 2 * 'yp;

10 1

At first glance, both procedures seem to have identical behavior. They both add
twice the value stored at the location designated by pointer yp to that designated
by pointer xp. On the other hand, function twiddle2 is more efficient. It
requires only three memory references (read *xp, read *yp, write *xp), whereas
twiddlel requires six (two reads of *xp, two reads of *yp, and two writes of
*xp). Hence, if a compiler is given procedure twiddlel to compile, one might
think it could generate more efficient code based on the computations performed
by twiddle2.

Consider however, the case in which xp and yp are equal. Then function
twiddlel will perform the following computations:

3 *xp += *xp; / + Double value at xp * /
4 *xp += *XP: / * Double value at xp * /

The result will be that the value at xp will be increased by a factor of 4. On the
other hand, function twiddle2 will perform the following computation:

XP += 2 'xp; / * Triple value at xp * /

The result will be that the value at xp will be increased by a factor of 3. The
compiler knowsnothing about how twiddle1 willbe called, and so it must assume
that arguments xp and yp can be equal. Therefore it cannot generate code in the
style of twiddle2 as an optimized version of twiddlel.

This phenomenon is known as memory aliasing. The compiler must assume
that different pointers may designate a single place in memory. This leads to one
of the major optimization blockers, aspects of programs that can severely limit
the opportunities for a compiler to generate optimized code.

The following problem illustrates the way memory aliasing can cause unex-
pected program behavior. Consider the following procedure to swap two val-

Section 5.1 Capabilities and Limitations of Optimizing Compilers 381

1 / * Swap value x a t xp with value y a t yp + /
2 void swap(int *xp, int *yp)
3 I
4 * xp = *xp t *yp; / * x.y * /
5 typ = 'xp - * yp; / ' xty-y = x '/
6 *xp = *xp - yp; / * xty-x = y * /

7 1

If this procedure is called with xp equal to yp, what effect will it have?

A second optimization blocker is due to function calls. As an example, con-
sider the following two procedures:

1 int f (int);
2
3 int funcl(x)
4 {
5 return f (x) t f (XI + f (x) + f (x);
6 1
7

8 int func2(x)
9 (
10 return 4*f(x);
il)

It might seem at first that both compute the same result, but with f u n d calling
f only once, whereas f u n c l calls it four times It is tempting to generate code in
the style of func2 when given f u n c l as the source.

Consider, however, the following code for f :

1 int counter = 0;
2

3 int f (int x)
4 I
5 return countertt;
6 1

'his function has a side effect-it modifies some part of the global program state.
Changing the number of times it gets called changes the program behavior. In
particular, a call to f u n c l would return O + 1 +2+3 = 6 , whereas a call to f unc2
would return 4 . 0 = 0, assuming both started with global variable c o u n t e r set
to 0.

Most compilers do not try to determine whether a function is free of side
effects and hence is a candidate for optimizations such as those attempted in
func2. Instead, the compiler assumes the worst case and leaves all function calls
intact.

Among compilers, the GNU compiler ccc is considered adequate, but not
exceptional, in terms of its optimization capabilities. It performs basic optimiza-
tions, but it does not perform the radical transformations on programs that more

382 Chapter 5 Optimizing Program Performance

"aggressive" compilers do. As a consequence, programmers using GCC must put
more effort into writing programs in a way that simplifies the compiler's task of
generating efficient code.

5.2 Expressing Program Performance

We need a way to express program performance that can guide us in improving
the code. A useful measure for many programs is cycles per element (CPE).
This measure helps us understand the loop performance of an iterative program
at a detailed level. Such a measure is appropriate for programs that perform a
repetitive computation, such as processing the pixels in an image or computing
the elements in a matrix product.

The sequencing of activities by a processor is controlled by a clock providing a
regular signal of some frequency, expressed in either megahertz (MHz), millions of
cycles per second, or gigahertz (GHz)? billions of cycles per second. For example,
when product literature characterizes a system as a "1.4-GHz" processor, it means
that the processor clock runs at 1400 megahertz. The time required for each
clock cycle is given by the reciprocal of the clock frequency. These typically are
expressed in nanoseconds, (i.e., billionths of a second). A 2-GHz clock has a 0.5-
nanosecond period, while a 500-MHz clock has a period of 2 nanoseconds. From a
programmer's perspective, it is more instructive to express measurements in clock
cycles rather than nanoseconds. That way, the measurements are less dependent
on the particular model of processor being evaluated, and they help us understand
exactly how the program is being executed by the machine.

Many procedures contain a loop that iterates over a set of elements. For
example, functions v s u m l and vsum2 inFigure 5.1 both compute the sum of two
vectors of length n . The first computes one element of the destination vector per
iteration. The second uses a technique known as loop unrolling to compute two
elements per iteration. This version will only work properly for even values of
n. Later in this chapter we cover loop unrolling in more detail, including how to
make it work for arbitrary values of n .

The time required by such a procedure can be characterized as a constant plus
a factor proportional to the number of elements processed. For example, Figure
5.2 shows a plot of the number of clock cycles required by the two functions for
a range of values of n. Using a least squaresfit, we find that the two function run
times (in clock cycles) can be approximated by lines with equations 80 + 4.0n and
83.5 +3.5n, respectively. These equations indicated an overhead of 80 to 84 cycles
to initiate the procedure, set up the loop, and complete the procedure, plus a linear
factor of 3.5 or 4.0 cycles per element. For large values of n (say, greater than 50),
the run times will be dominated by the linear factors. We refer to the coefficients
in these terms as the effective number of cyclesper element, abbreviated "CPE."
Note that we prefer measuring the number of cycles per element rather than the
number of cycles per ireration, because techniques such as loop unrolling allow us
to use fewer iterations to complete the computation, but our ultimate concern is
how fast the procedure will run for a given vector length. We focus our efforts on

Section 5.2 Expressing Program Performance 383

coddopt/vsurn.c
1 void vswnl (i n t n)
2 {
3 i n t i ;
4

5 fo r (i = 0 ; i < n; i++)
6 c [i] = a [i l + b [i] ;
7 1
8

9 I* Sum vector of n elements (n must be even) * I
1 0 void vsumZ(int n)
11 (

1 2 i n t i;
13

14 fo r (i = 0; i < n; i + = 2) {

15 I* Compute two elements per iteration ' 1
1 6 c [i l = a [i] + b [i l ;
1 7 c [i + l] = a [i + l] + b [i + l] ;
18 1
19 1

Figure 5.1 Vector sum functions. These provide examples for how we expressprogram
performance.

0 1 I I I

0 50 1 00 150 200
Elements

Figure 5.2 Performance of vector sum functions. The slope of the lines indicates
the number of clock cycles per element (CPE):

384 Chapter 5 Optimizing Program Performance

minimizing the CPE for our computations. By this measure, vsum2, with a CPE
of 3.50, is superior to vsuml, with a CPE of 4.0.

Aside: What is a least squares fit?

For a set of data points (x l , yl), . . . (x,, y,), we often try to draw a line that best approximates theX-Y
trend represented by this data. With a least squares fit, we look for a line of the form y = m x + b that
minimizes the following error measure:

An algorithm for computing m and b can be derived by finding the derivatives of E(m, b) with respect
to rn and b and setting them to 0.

Later in this chapter we will take a single function and generate many different
variants that preserve the function's behavior, but with different performance
characteristics. For three of these variants, we found that the run times (in clock / cycles) can be approximated by the following functions:

Version 1 60 + 35n.
Version 2 136 + 4n.
Version 3 157 + 1.25.

For what values of n would each version be the fastest of the three? Re-
member that n will always be an integer.

5.3 Program Example

To demonstrate how an abstract program can be systematically transformed into
more efficient code, consider the simple vector data structure, shown in Figure 5.3.
A vector is represented with two blocks of memory. The header is a structure
declared as follows:

codefopt/vec. h

1 / + Create abstract data type for vector '/
2 typedef s t r u c t I
3 i n t len ;
4 data-t *data;
5) vec-rec, * v e c q t r ;

coddopdvec. h

The declaration uses data type data-t to designate the data type of the underlying
elements. In our evaluation, we measure the performance of our code for data

Section 5.3 Program Example 385

Figure 5.3
length ELI0,',*, length-1

Vector abstract data . . .
type. A vector is
represented by header
information plus array of
designated length.

types int, float, anddouble. We do thisby compiling and running the program
separately for different type declarations, as in the following example:

typedef int data-t;

In addition to the header, we allocate an array of len objects of type data-t to
hold the actual vector elements.

Figure 5.4 shows some basic procedures for generating vecton, accessing vec-
tor elements, and determining the length of a vector. An important feature to note
is that get-vec-element, the vector access routine, performs bounds checking
for every vector reference. This code is similar to the array representations used
in many other languages, including Java. Bounds checking reduces the chances
of program error, but, as we will see, it also significantly affects program perfor-
mance.

As an optimization example, consider the code shown in Figure 5.5, which
combines all of the elements in a vector into a single value according to some
operation. By using different definitions of compile-time constants IDENT and
OPER, the code can be recompiled to perform different operations on the data. In
particular, using the declarations

#define IDm 0
#define OPER t

it sums the elements of the vector. Using the declarations

#define IDENT 1
#define OPER *

it computes the product of the vector elements.
As astarting point, here are the CPE measurementsfor combinel running on

an 1 n t e l ~ e n t i G III, trying all combinations of data type and combining operation.
In ourmeasurements, we found that the timings were generally equal for single and
double-precision floating point data. We therefore show only the measurements
for single precision.

Function 1 page I Integer I Floating point
t * I + *

combinel
cornbinel

387
387

41.44 160.00
31.25 143.00

I

Abstract unoptimized
Abstract -02

42.06 41.86
31.25 33.25

1 386 Chapter 5 Optimizing Program Performance

1 / * Create vector of specified length * /
vecgtr new-vec(int len)
{

/ + allocate header structure * /
vecqtr result = (vecgtr) malloc(sizeof(vec-rec));
if (!result)

return NULL; / * Couldn't allocate storage * /
result->len = len;
/ * Allocate array * /
if (len > 0) {

data-t *data = (data-t *)calloc(len, sizeoE(data-t));
if (!data) {

free((void *) result);
return NULL; / * Couldn't allocate storage * /

I

result->data = data;
I
else

result->data = NULL;
return result;

1

' *
* Retrieve vector element and store at dest.
* Return 0 (out of bounds) or 1 [successful)
' 1
int get-vec-element(vecqtr v, int index, data-t *dest)
t

if (index < 0 ((index >= v->len)
return 0;

*dest = v->data[indexl;
return 1;

I

I + Return length of vector ' 1

int vec-length(vecgtr v)
1

return v->len:
1

Figure 5.4 Implementation of vector abstract data type. In the actual program, data
type data-t is declared to be int, float, or double.

Section 5.4 Eliminating Loop Inefficiencies 387

- codeloptlcombine.~
1 I * Ir,plementation with maximum use of data abstract ion + /
2 void combinel(vecqtr v, data-t *dest)
3 [
4 i n t i ;
5
6 *dest = IDENT;
7 f o r (i = 0; i < vec-length(v); i+t) {

8 data-t val ;
9 get-vec-element (v , i , &val) ;
1 0 *dest = *dest OPER va l ;
11 }

Figure 5.5 Initial implementation of combining operation. Using different declarations
of identity element IDENT and combining operation OPER, we can measure the routine for
different operations.

By default, the compiler generates code suitable for stepping with a symbolic
debugger. Very little optinuzation is performed since the intention is to make
the object code closely match the computations indicated in the source code. By
simply setting the command line switch to '-02' we enable optimizations. As
can be seen, this sipficantly improves the program performance. In general, it is
good to get into the habit of enabling this level of optimization, unless the program

I is being compiled with the intention of debugging it. For the remainder of our
measurements, we enable this level of compiler optimization.

L
Note also that the times are fairly comparable for the different data types and

E the different operations, with the exception of floating-point multiplication. These
1 very high cycle counts for multiplication are due to an anomaly in our benchmark
1 data. Identifying such anomalies is an important component of performance anal-

ysis and optimization. We return to this issue in Section 5.11.1. We will see that
we can improve on this performance considerably.

5.4 Eliminating Loop lnefficiencies

Observe that procedure combinel, as shown in Figure 5.5, calls function
vec-length as the test condition of the f o r loop. Recall from our discussion
of loops that the test condition must be evaluated on every iteration of the loop.
On the other hand, the length of the vector does not change as the loop proceeds.
We could therefore compute the vector length only once and use this value in our
test condition.

Figure 5.6 shows a modified version called combine2, which calls
vec-length at the beginning and assigns the result to a local variable length.
This local variable is then used in the test condition of the for loop. Surprisingly,
this small change significantly affects program performance. As the following ta-
ble shows, we eliminate approximately 10 clock cycles for each vector element
with this simple transformation:

388 Chapter 5 Optimizing Program Performance

1 I* Move call to vec-lengch out of loop * /

2 void combine2(vecqtr v, data-t *dest)
3 I
4 int i;
5 int length = vec-iength(v);
6

7 *dest = IDENT;
8 f o r (i = 0; i < length; it+) {

9 data-t val;
10 get-vec-element(v, i, &val);
11 *dest = *dest OPER val;
12 }

1 3 1

Figure 5.6 Improving the efficiency of the loop test. By moving the call to vec-length
out of the loop test, we eliminate the need to execute it on every iteration.

This optimization is an instance of a general class of optimizations known as
code motion. They involve identifying a computation that is performed multiple
times, (e.g., within a loop), but such that the result of the computation will not
change. We can therefore move the computation to an earlier section of the code
that doesnotget evaluated as often. Inthiscase, wemoved thecall tovec-length
from within the loop to just before the loop.

Optimizing compilers attempt to perform code motion. Unfortunately, as dis-
cussed previously, they are typically very cautious about making transformations
that change where or how many times a procedure is called. They cannot reliably
detect whether or not a function will have side effects, and so they assume that it
might. For example, if vec-length had some side effect, then combine1 and
combine2 could have different behaviors. Incases such as these, the programmer
must help the compiler by explicitly performing the code motion.

As an extreme example of the loop inefficiency seen in combinel, consider
the procedure lowerl shown in Figure 5.7. This procedure is styled after rou-
tines submitted by several students as part of a network programming project. Its
purpose is to convert all of the uppercase letters in a string to lower case. The pro-
cedure steps through the string, converting each uppercase character to lower case.

The library procedure strlen is called as part of the loop test of lowerl. A
simple version of strlen is also shown in Figure 5.7. Since strings in C are null-
terminated character sequences, s trlen must step through the sequence until it
hits a null character. For a string of length n , strlen takes time proportional to

Function Method Page Integer (Floating point
+ * I + *

Section 5.4 Eliminating Loop Inefficiencies 389

code/opt/lower.c
1 I * Convert string to lower case: slow * /

2 void lowerl(char *s)
3 (
4 int i;
5
6 for (i = 0; i < strlen(s); i++)
7 if (s[il >= 'A' && s[i] <= '2')
8 s[il -= ('A' - 'a');
9 }
10
11 I* Convert string to lower case: faster * /
12 void lower2 (char *s)
13 (
14 int i;
15 int len = strlen(s);
16
17 for (i = 0; i < len; i++)
18 if (s[il >= 'A' && s[i] <= '2')
19 s[i] -= ('A' - 'a');
20 }
2 1
22 / * ~mplementation of library function strlen .I
23 I* Compute length of string * I
2 4 size-t strlen(const char *s)
25 (
2 6 int length = 0;
21 while (*s ! = '\0') (

2 8 s++;
2 9 length++;
30 1
31 return length;
32 }

code/opt/[ower.c

Figure 5.7 Lower-case conversion routines. The two procedures have radically different
performance.

n. Since strlen is called on each of the n iterations of lowerl, the overall run
time of lowerl is quadratic in the string length.

This analysis is confirmed by actual measurements of the procedure for dif-
ferent length strings, as shown Figure 5.8. The graph of the run time for lowerl
rises steeply as the string length increases. The lower part of the figure shows the
run times for eight different lengths (not the same as shown in the graph), each
of which is a power of 2. Observe that for lowerl each doubling of the string
length causes a quadrupling of the run time. This is a clear indicator of quadratic
complexity. For a string of length 262,144, lowerl requires a full 3.1 minutes of
CPU time.

Function lower2 shown in Figure 5.7 is identical to that of lowerl, ex-
cept that we have moved the call to strlen out of the loop. The performance

390 Chapter 5 Optimizing Program Performance

0 50,000 100,000 150,000 200,000 250,000
String length

1 Function 1 Strine leneth

Figure 5.8 Comparative performance of lower-case conversion routines. The original code lowerl has quadratic
asymptotic complexity due to an inefficient loop structure. The modified code lower2 has linear complexity.

improves dramatically. For a string length of 262,144, the function requires just
0.006 seconds-over 30,000 times faster than lowerl. Eachdoublmg of the string
length causes a doubling of the run time-a clear indicator of linear complexity.
For longer strings, the run time improvement will be even greater.

In an ideal world, a compiler would recognize that each call to strlen in
the loop test will return the same result, and thus the call could be moved out of
the loop. This would require a very sophisticated analysis, since strlen checks
the elements of the string and these values are changing as lowerl proceeds.
The compiler would need to detect that even though the characters within the
string are changing, none are being set from nonzero to zero, or vice versa. Such
an analysis is well beyond the ability of even the most aggressive compilers, so
programmers must do such transformations themselves.

This example illustrates a common problem in writing programs, in which a
seemingly trivial piece of code has a hidden asymptotic inefficiency. One would
not expect a lowercase conversion routine to be alimiting factor in a program's
performance. Typically, programs are tested and analyzed on small data sets, for
which the performance of lowerl is adequate. When the program is ultimately
deployed, however, it is entirely possible that the procedure could be applied to a
string of one million characters, for which lowerl would over require nearly one
hour of CPU time. All of a sudden this benign piece of code has become a major
performance bottleneck. By contrast, lower2 would complete in well under a

Section 5.5 Reducing Procedure Calls 391

second. Stories abound of major programming projects in which problems of this
sort occur. Part of the job of a competent programmer is to avoid ever introducing
such asymptotic inefficiency.

1 Consider the following functions:

int min(int x, int y) { return x < y ? x : y;)
int max(int x, int y) (return x < y ? y : x;)
void incr(int *xp, int v) { *xp += v;)
int square(int x) { return x*x; 1

1 The following three code fragments call these functions:

A. for (i = min(x, y); i < max(x, y); incr(&i, 1))
t += square(i);

B. for (i = max(x, y) - 1; i >= min(x, y); incr(&i, -1))
t += square(i1 ;

c. int low = min(x, y) ;
int high = max(x, y);

for (i = low; i < high; incr(&i, 1))
t += square(i) ;

Assume x equals 10 and y equals 100. Fill in the following table indicating
the number of times each of the four functions is called in code fragments A-C.

I Code 1 min max incr square

5.5 Reducing Procedure Calls

As we have seen, procedure calls incur substantial overhead and block most forms
of program optimization. We can see in the code for combine2 (Figure 5.6) that
get-vec-element is called on every loop iteration to retrieve the next vector
element. ?his procedure is especially costly since it performs bounds checking.
Bounds checking might be a useful feature when dealing with arbitrary array
accesses, but a simple analysis of the code for combine2 shows that all references
will be valid.

Suppose instead thatwe add a function get-vec-start to our abstract data
type. ?his function returns the starting address of the data array, as shown in
Figure 5.9. We could then write the procedure shown as combine3 in this figure,

b

392 Chapter 5 Optimizing Program Performance

1 data-t *get-vec-start (vecqtr V)

2 (
3 return v->data;

4 1

1 I * Direct access to vector data * I
2 void combine3 (vecqtr v, data-t *dest)
3
4 int i;
5 int length = vec-length(v):
6 data-t *data = get-vec-start(v);
7

8 *dest = IDENT;
9 for (i = 0; i < length; i++) {

10 *dest = *dest OPER data[il:
11 1
1 2)

Figure 5.9 Eliminating function calls within the loop. The resulting code runs much
faster, at some cost in program modularity.

having no function calls in the inner loop. Rather than making a function call to
retrieve each vector element, it accesses the array directly. A purist might say that
this transformation seriously impairs the program modularity. In principle, the
user of the vector abstract data type should not even need to know that the vector
contents are stored as an array, rather than as some other data structure such as
a linked list. A more pragmatic programmer would argue the advantage of this
transformation on the basis of the following experimental results:

Function I Paee 1 Method Inteeer I Floatine ~ o i n t I

(combine3 1 392 (Direct data access 1-1

There is an improvement of up to a factor of 3.5X. For applications in which
performance is a significant issue, one often must compromise modularity and
abstraction for speed. It is wise to include documentation on the transformations
applied, as well as the assumptions that led to them, in case the code needs to be
modiied later.

Section 5.6 Eliminating Unneeded Memory References 393

Aside: Expressing relative performance.

'The best way to express a performance improvement is as a ratio of the form Told/Tnew, where Told is the
time required for the original version and Tnew is the time required by the modified version. This will be a
number greater than 1.0 if any real improvement occurred. We use the suffix 'X' to indicate such a ratio,
where the factor "3.5X" is expressed verbally as "3.5 times."

'The more traditional way of expressing relative change as a percentage works well when the change
is small, but its definition is ambiguous. Should it be 100. (Told - Tnew)/Tnew or possibly 100. (Told -
TWw)/Told, or something else? In addition, it is less instructive for large changes. Saying that "performance
improved by 250%" is more difficult to comprehend than simply saying that the performance improved
by a factor of 3.5.

5.6 Eliminating Unneeded Memory References

The code for combine3 accumulates the value being computed by the combining
operation at the location designated by pointer des t . This attribute can be seen
by examining the assembly code generated for the compiled loop, with integers as
the data type and multiplication as the combining operation. In this code, register
%ecx points to data, %edx contains the value of i, and %edi points to des t .

combine3: tjpe=INT, OPER = *
dest i n Bedi, data i n Becx, i i n Be&, length i n 8esi

1 .LIE: loop:
2 movl (%edi),%eax Read 'des t

3 imull (%ecx,%edx,4),%eax Multiply by data i i l

4 movl %eax, (%edi) W r i t e 'des t

5 incl %edx it+
6 cmpl %esi,%edx Compare i : length

7 jl .LIE ~f <, goto loop

Instruction 2 reads the value stored at d e s t and instruction 4 writes back to this
location. This seems wasteful, since the value read by instruction 2 on the next
iteration normally will be the value that has just been written.

This leads to the optimization shown as combine4 in Figure 5.10, where we
introduce a temporary variable x that is used in the loop to accumulate the com-
puted value. The result is stored at *des t only after the loop has been completed.
As the assembly code that follows shows, the compiler can now use register Beax
to hold the accumulated value. Compared to the loop for combine3, we have
reduced the memory operations per iteration from two reads and one write to just
a single read. Registers %ecx and Bedx are used as before, but there is no need
to reference *dest.

combinel: type=INT, OPER = *
d a t a i n Beax, x i n Becx, i i n Be&, length i n 8esi

I .L24: loop:
2 imull (%eax,%edx,4),%ecx ~ u l t i p l y x by data i i i

3 incl %edx i++

4 cmpl %esi,%edx compare i : length

5 jl .L24 rf <, goto loop

394 Chapter 5 Optimizing Program Performance

1 I* Accumulate result in local variable ' I
2 void combine4(vecqtr v, data-t *dest)

3 I
4 int i ;
5 int length = vec-length (v) ;
6 data-t *data = get-vec-start(v);
7 data-t x = IDENT;
B

9 *dest = IDENT;
10 for (i = 0; i < length; it+) {
11 x = x OPER data[il;
12 }

13 'dest = x;
14 }

Figure 5.10 Accumulating result in temporary. This eliminates the need to read and write
intermediate values on every loop iteration.

We see a significant improvement in program performance, as shown in the fol-
lowing table:

I I

combine3 1 392 1 Direct data access
I

6.00 9.00 8.00 117.00 1 combine4 1 394 Accumulate in temmrarv 1 2.00 4.00 3.00 5.00

The most dramatic decline is in the time for floating-point multiplication. Its
time becomes comparable to the times for the other combinations of data type and
operation. We will examine the cause for this sudden decrease in Section 5.11.1.

Again, one might think that a compiler should be able to automatically trans-
form the combine3 code shown in Figure 5.9 to accumulate the value in a register,
as it does with the code for combine4 shown in Figure 5.10.

In fact, however, the two functions can have different behavior due to memory
aliasing. Consider, for example, the case of integer data with multiplication as the
operation and 1 as the identity element. Let v be a vector consisting of the three
elements [2,3,5] and consider the following two function calls:

That is, we create an alias between the last element of thevector and the destination
for storing the result. The two functions would then execute as follows:

I Function Initial Before loo^ i = 0 1 i = 1 1 i = 2 1 Final 1

Section 5.7 Understanding Modern Processors 395

As shown previously, combine3 accumulates its result at the destination,
which in this case is the final vector element. This value is therefore set first to
1, then to 2 . 1 = 2, and then to 3 . 2 = 6. On the final iteration, this value is
then multiplied by itself to yield a final value of 36. For the case of combined,
the vector remains unchanged until the end, when the final element is set to the
computed result 1 . 2 . 3 . 5 = 30.

Of course, our example showing the distinction between combine3 and corn-
bine4 is highly contrived. One could argue that the behavior of combine4 more
closely matches the intention of the function description. Unfortunately, an op-
timizing compiler cannot make a judgement about the conditions under which a
function might be used and what the programmer's intentions might be. Instead,
when given combine3 to compile, it is obligated to preserve its exact functionality,
even if this means generating inefficient code.

5.7 Understanding Modern Processors

Up to this point, we have applied optimizations that did not rely on any features
of the target machine. They simply reduced the overhead of procedure calls and
eliminated some of the critical "optimization blockers" that cause difficulties for
optimizing compilers. As we seek to push the performance further, we must begin
to consider optimizations that make more use of the means by which processors
execute instructions and the capabilities of particular processors. Getting every
last bit of performance requires a detailed analysis of the program, as well as code
generation tuned for the target processor. Nonetheless, we can apply some basic
optimizations that will yield an overall performance improvement on a large class
of processors. The detailed performance results we report here may not hold for
other machines, but the general principles of operation and optimization apply to
a wide variety of machines.

To understand ways to improve performance, we require a simple operational
model of how modern processors work. Due to the large number of transistors
that can be integrated onto a single chip, modern microprocessors employ com-
plex hardware that attempts to maximize program One result is that
their actual operation is far different from the view that is perceived by looking at
assembly-language programs. At the assembly-code level, it appears as if instruc-
tions are executed one at a time, where each instruction involves fetching values
from registers or memory, performing an operation, and storing results back to a
register or memory location. In the actual processor, a number of instructions are
evaluated simultaneously. In some designs, there can be 80 or more instructions
"in flight." Elaborate mechanisms are employed to make sure the behavior of this
parallel execution exactly captures the sequential semantic model required by the
machine-level program.

5.7.1 Overall Operation ,. ..
-

Figure 5.11 shows a very simplified view of a modern microprocessor. Our hy-
pothetical processor design is based loosely on the Intel "P6" microarchitecture.
[30], the basis for the Intel PentiumPro, Pentium I1 and Pentium 111 processors. . ~ .

396 Chapter 5 Optimizing Program Performance

Figure 5.11
Block diagram of a
modern processor.
The Instruction control
unit is responsible for
reading instructions from
memory and generating
a sequence of primitive
operations. The Execution
unit then performs the
operations and indicates
whether the branches
were correctly predicted.

Instruction control

L
Registel
updates

I
T I Operations

I

] Prediction
i OK?

...

cache LJ

-
Fetch
control

Instruction
decode

j

:..........

Execution

Retirement

The newer Pentium 4 has a different microarchitecture, but it has a similar over-
all structure to the one we present here. The P6 microarchitecture typifies the
high-end processors produced by a number of manufacturers since the late 1990s.
It is described in the industry as being superscalar, which means it can perform
multiple operations on every clock cycle, and out-of-order, meaning that the order
in which instructions execute need not correspond to their ordering in the assem-
bly program. T%e overall design has two main parts: the Instruction control unit
(ICU), which is responsible for reading a sequence of instructions from memory
and generating from these a set of primitive operations to perform on program
data, and the Execution unit (EU), which executes these operations.

The ICU reads the instructions from an instruction cache-a special, high-
speed memory containing the most recently accessed instructions. In general,
the ICU fetches well ahead of the currently executing instructions, so that it has
enough time to decode these and send operations down to the EU. One problem,
however, is that when a program hits a branch,'there are two possible directions
the program might go. The branch can be taken, with control passing to the

Address
-r

. Instructions

' We use the term "branch" specifically to refer to conditional jumpinstructions. Other instructions
that can transfer control to multiple destinations, such as procedure return and indirect jump$
provide similar challenges for the processor.

-

Instruction
cache

unit

-

Section 5.7 Understanding Modern Processors 397

branch target. Alternatively, the branch can be not taken, with control passing
to the next instruction in the instruction sequence. Modern processors employ
a technique known as branch prediction, in which they guess whether or not a
branch will be taken and also predict the target address for the branch. Using
a technique known as speculative execution, the processor begins fetching and
decoding instructions at where it predicts the branch will go, and even begins
executing these operations before it has been determined whether or not the
branch prediction was correct. If it later determines that the branch was predicted
incorrectly, it resets the state to that at the branch point and begins fetching and
executing instructions in the other direction. A more exotic technique would
be to begin fetching and executing instructions for both possible directions, later
discarding the results for the incorrect direction. To date, this approach has not
been considered cost effective. The block labeled Fetch Control incorporates
branch prediction to perform the task of determining which instructions to fetch.

The Instruction Decoding logic takes the actual program instructions and
converts them into a set of primitive operations. Each of these operations performs
some simple computational task such as adding two numbers, reading data from
memory, or writing data to memory. For machines with complex instructions, such
as an IA32 processor, an instruction can be decoded into a variable number of
operations. Thedetails vary from one processor design to another, but we attempt
to describe a typical implementation. In this machine, decoding the instruction

yields a single addition operation, whereas decoding the instruction

yields three operation--one to load a value from memory into the processor,
one to add the loaded value to the value in register %eax, and one to store the
result back to memory. This decoding splits instructions to allow a division of
labor among a set of dedicated hardware units. These units can then execute
the different parts of multiple instructions in parallel. For machines with simple
instructions, the operations correspond more closely to the original instructions.

The EU receives operations from the instruction fetch unit. Typically, it can
receive a number of them on each clock cycle. These operations are dispatched
to a set of functional units that perform the actual operations. These functional
units are specialized to handle specific types of operations. Our figure illustrates
a typical set of functional units. It is styled after those found in recent Intel
processors. The units in the figure are as follows:

IntegerIBranch: Performs simple integer operations (add, test, compare, logi-
cal). Also processes branches, as is discussed below.

GeneralInteger: Can handle allinteger operations, including multiplication and
division.

Floating-Point Add: Handles simple floating-point operations (addition, format
conversion).

398 Chapter 5 Optimizing Program Performance

Floating-Point Multiplication/Division: Handles floating-point multiplication
and division. More complex floating-point instructions, such transcendental
functions, are converted into sequences of operations.

Load: Handles operations that read data from the memory into the processor.
The functional unit has an adder to perform address computations.

Store: Handles operations that write data from the processor to the memory.
The functional unit has an adder to perform address computations.

As shown in the figure, the load and store units access memory via a data cache,
a high-speed memory containing the most recently accessed data values.

With speculative execution, the operations are evaluated, but the final results
are not stored in the program registers or data memory until the processor can
be certain that these instructions should actually have been executed. Branch
operations are sent to the EU, not to determine where the branch should go, but
rather to determine whether or not they were predicted correctly. If the prediction
was incorrect, the EU will discard the results that have been computed beyond
the branch point. It will also signal to the Branch Unit that the prediction was
incorrect and indicate the correct branch destination. In this case, the Branch
Unit begins fetching at the new location. Such a misprediction incurs a significant
cost in performance. It takes a while before the new instructions can be fetched,
decoded, and sent to the execution units. We explore this further in Section 5.12.

Within the ICU, the Retirement Unit keeps track of the ongoing processing and
makes sure that it obeys the sequential semantics of the machine-level *robam.
Our figure shows a Register File containing the integer and floating-point registers
as part of the Retirement Unit, because this unit controls the updating of these
registers. As an instruction is decoded, information about it is placed in a first-in,
first-out queue. This information remains in the queue until one of two outcomes
occurs. First, once the operations for the instruction have completed and any
branch points leading to this instruction are confirmed as havingbeen correctl;
predicted, the instruction can be retired, with any updates to the program registers
being made. If some branch point leading to thisinstruction was mispredicted,
on the other hand, the instruction will beflushed, discarding any results that may
have been computed. By this means, mispredictions will not alter the program
state.

As we have described, any updates to the program registers occur only as
instructions are being retired, and this takes place only after the processor can be
certain that any branches leading to thisinstruction have been correctly predicted.
To expedite the communication of results from one instruction to another, much
of this information is exchanged among the execution units, shown in the figure
as "Operation Results." As the arrows in the figure show, the execution units can
send results directly to each other.

The most common mechanism for controlling the communication of operands
among the execution units is called register renaming. When an instruction that
updates register r is decoded, a tag t is generated giving a unique identifier to
the result of the operation. An entry (r , t) is added to a table maintaining the
association between each program register and the tag for an operation that will

Section 5.7 Understanding Modern Processors 399

update this register. When a subsequent instruction using register r as an operand
is decoded, the operation sent to the Execution unit will contain t as the source
for the operand value. When some execution unit completes the first operation, it
generates a result (v , t) indicating that the operation with tag t produced value v .
Any operation waiting for t as a source will then use v as the source value. By this
mechanism, values can be passed directly from one operation to another, rather
than being written to and read from the register file. The renaming table only
contains entries for registers having pending write operations. When a decoded
instruction requires a register r , and there is no tag associated with this register,
the operand is retrieved directly from the register file. With register renaming, an
entire sequence of operations can be performed speculatively, even though the
registers are updated only after the processor is certain of the branch outcomes.

5.7.2 Functional Unit Performance

Figure 5.12 documents the performance of some of basic operations for an Intel
PentiumIII. These timings are typical for other processors as well. Each operation
is characterized by two cycle counts: the latency, which indicates the total number
of cycles the functional unit requires to complete the operation; and the issue time,
which indicates the number of cycles between successive independent operations.
The latencies range from one cycle for basic integer operations, to several cy-
cles for loads, stores, integer multiplication, and the more common floating-point
operations, to many cycles for division and other complex operations.

As the third column in Figure 5.12 shows, several functional units of the pro-
cessor are pipelined, meaning that they can start on a new operation before the
previous one is completed. The issue time indicates the number of cycles between
successive operations for the unit. In a pipelined unit, the issue time is smaller
than the latency. A pipelined function unit is implemented as a series of stages,
each of which performs part of the operation. For example, a typical floating-point
adder contains three stages: one to process the exponent values, one to add the
fractions and one to round the final result. The operations can proceed through
the stages in close succession rather than waiting for one operation to complete

400 Chapter 5 Optimizing Program Performance

Figure 5.12 Performance of Pentium Ill arithmetic operations. Latency represents the
total number of cyclesfor a single operation. Issue time denotes the number of cycles
between successive, independent operations. (Obtained from Intel literature).

Operation
Integer add
Integer multiply
Integer divide
Floating-point add
Floating-point multiply
Floating-point divide
Load (cache hit)
Store (cache hit)

before the next begins. ?his capability can be exploited only if there are succes-
sive, logically independent operations to be performed. As indicated, most of the
units can begin a new operation on every clock cycle. The only exceptions are
the floating-point multiplier, which requires a minimum of two cycles between
successive operations, and the two dividers, which are not pipelined at all.

Circuit designers cancreate functional units with a range of performance char-
acteristics. Creating a unit with short latency or issue time requires more hardware,
especially for more complex functions such as multiplication and floating-point
operations. Since there is only a limited amount of space for these units on the
&icroprocessor chip, the CPU designers must carefully balance the number of
functional units and their individual performance to achieve optimal overall per-

Latency
1
4

36
3
5

38
3
3

formance. They evaluate many different benchmark programs and dedicate-the
most resources to the most critical operations. As Figure 5.12 indicates, integer
multiplication and floating-point multiplication and addition were considered im-
portant operations in design of the Pentium 111, even though a significant amount
of hardware is required to achieve the low latencies and high degree of pipelin-
ing shown. On the other hand, division is relatively infrequent and difficult to
implement with short latency or issue time, and so these operations are relatively
slow.

Issue time
1
1

36
1
2

38
1
1

5.7.3 A Closer Look at Processor Operation

As a tool for analyzing the performance of a machine level program executing
on a modem processor, we have developed a more detailed textual notation to
describe the operations generated by the instruction decoder, as well as a graphical
notation to show the processing of operations by the functional units. Neither
of these notations exactly represents the implementation of a specific, real-life
processor. They are simply methods to help understand how a processor can take
advantage of parallelism and branch prediction when executing a program.

Section 5.7 Understanding Modern Processors 401

Translating Instructions into Operations

We present our notation by working with combine4 (Figure 5.10), our fastest
code up to this point as an example. We focus just on the computation performed
by the loop, since this is the dominating factor in performance for large vectors.
We consider the cases of integer data with both multiplication and addition as
the combining operations. The compiled code for this loop with multiplication
consists of four instructions. In this code, register Beax holds the pointer data,
%edx holds i, %ecx holds x, and %esi holds length:

combined: type=lNT, OPER = *
data in Beax, x in Becx, i in Be&, length in Besi

1 .L24: loop:

2 imull (%eax,%edx,4),%ecx Mu1 tiply x by data ji j
3 incl %edx i++
4 cmpl %esi,%edx Compare i : 1 ength
5 jl .L24 I£ <, goto loop

Every time the processor executes the loop, the instruction decoder translates
these four instructions into a sequence of operations for the Execution unit. On
the first iteration, with i equal to 0, our hypothetical machine would issue the
following sequence of operations:

Assemblv Instructions 1 Execution unit o~erations

In our translation, we have converted the memory reference by the multiply
instruction into an explicit load instruction that reads the data from memory into
the processor. We also have assigned operand labels to the values that change
each iteration. These labels are a stylized version of the tags generated by register
renaming. Thus, the value in register %ecx is identified by the label %ecx. 0 at
the beginning of the loop, and by %ecx. 1 after it has been updated. The register
values that do not change from one iteration to the next would be obtained directly
from the register file during decoding. We also introduce the label t . 1 to denote
the value read by the load operation and passed to the i m u l l operation, and we
explicitly show the destination of the operation. Thus, the pair of operations

.L24:
imull (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx

jl .L24

load (%eax, %edx.O, 4) + t.1
imull t.1, %ecx.O + %ecx. 1

load (%eax, %edx.O, 4) + t. 1

imull t.1, %ecx.O + %ecx. 1

incl %edx. 0 + %edx.l

cmpl %esi, %edx.l + cc. 1

jl-taken cc.1

indicates that the processor 6tst performs a load operation, computing the ad-
dress using the value of %eax (which does not change duriig the loop), and the
value stored in %edx at the start of the loop. This will yield a temporary value,
which we label t .I. The multiply operation then takes this value and the value of

402 Chapter 5 Optimizing Program Performance

%ecx at the start of the loop and produces a new value for %ecx. As this example
illustrates, tags can be associated with intermediate values that are never written
to the register file.

The operation

incl %edu.O -t %edx.l

indicates that the increment operation adds 1 to the value of %edx at the start of
the loop to generate a new value for this register.

The operation

cmpl %esi, %edx.l -t cc.1

indicates that the compare operation (performed by either integer unit) compares
the value in %esi (which does not change in the loop) with the newly computed
value for %edx. It then sets the condition codes identified with the explicit label
cc .1 . As this example illustrates, the processor can use renaming to track changes
to the condition code registers.

Finally, the jump instruction was predicted as being taken. The jump operation

jl-taken cc.1

checks whether the newly computed values for the condition codes (cc . 1) indi-
cate this was the correct choice. If not, then it signals the ICU to begin fetching
instructions at the instruction following the j 1. To simplify the notation, we omit
any information about the possible jump destinations. In practice, the processor
must keep track of the destination for the unpredicted direction, so that it can
begin fetching from there in the event the prediction is incorrect.

As this example translation shows, our operations mimic the structure of
the assembly-language instructions in many ways, except that they refer to their
source and destination operations by labels that identlfy different instances of the
registers. In the actual hardware, register renaming dynamically assigns tags to
indicate these different values. Tags are bit patterns rather than symbolic names
such as "%edx. 1," but they serve the same purpose.

Processing of Operations by the Execution Unit

Figure 5.13 shows the operations in two forms: that generated by the instruc-
tion decoder and that shown as a computation graph in which operations are
represented by rounded boxes and arrows indicate the passing of data between
operations. We only show the arrows for the operands that change from one iter-
ation to the next, since only these values are passed directly between functional
units.

The height of each operator box indicates how many cycles the operation
requires-that is, the latency of that particular function. In this case, integer multi-
plication imull requires four cycles, load requires three, and the other operations
require one. In demonstrating the timing of a loop, we position the blocks verti-
cally to represent the times when operations are performed, with time increasing

Section 5.7 Understanding Modern Processors 403

t e d x . 0

Execution unit operations
load (%eax, Bedx.0, 4) -t t.1
imull t.1, Becx.0 -P %ecx. 1

incl %edx.O -t Bedx.1
cmpl Besi, %edx.l -P cc.1
jl-taken cc.1

Figure 5.13 Operationsfor first iteration of inner loop of combine4 for integer multiplication. Memory reads are
explicitly converted to loads. Register names are tagged with instance numbers.

in the downward direction. We can see that the five operations for the loop form
two parallel chains, indicating two series of computations that must be performed
in sequence. The chain on the left processes the data, first reading an array ele-
ment from memory and then multiplying it times the accumulated product. The
chain on the right processes the loop index i, first incrementing it and then com-
paring it to length. The jump operation checks the result of this comparison to
make sure the branch was correctly predicted. Note that there are no outgoing
arrows from the jump operation box. If the branch was correctly predicted, no
other processing is required. If the branch was incorrectly predicted, then the
branch function unit will signal the instruction fetch control unit, and this unit will
take corrective action. In either case, the other operations do not depend on the
outcome of the jump operation.

Figure 5.14 shows the same translation into operations but with integer ad-
dition as the combining operation. As the graphical depiction shows, all of the
operations, except load, now require just one cycle.

%edx. 0

Execution unit operations
load (%eax, Bedx.0, 4)
add1 t.1, %ecx.O Becx. 1
incl Bedx. 0 + Bedx.1
cmpl %esi, %edx.l -t cc.1
jl-taken cc.1

% e c x . l

Figure 5.14 Operations for first iteration of inner loop of combine4 for integer
addition. Compared to multiplication, the only change is that the addition operation
requires only one cycle.

404 Chapter 5 Optimizing Program Performance

Scheduling of Operations with Unlimited Resources

To see how a processor would execute a series of iterations, imagine first a proces-
sor with an unlimited number of functional units and with perfect branch predic-
tion. Each operation could then begin as soon as its data operands were available.
The performance of such a processor would be limited only by the latencies and
throughputs of the functional units, and the data dependencies in the program.
Figure 5.15 shows the computation graph for the first three iterations of the loop
in combine4 with integer multiplication on such a machine. For each iteration,
there is a set of five operations with the same configuration as those in Figure
5.13, with appropriate changes to the operand labels. The arrows from the opera-
tors of one iteration to those of another show the data dependencies between the
different iterations.

Each operator is placed vertically at the highest position possible, subject to
the constraint that no arrows can point upward, since this would indicate infor-
mation flowing backward in time. bus, the load operation of one iteration can
begin as soon as the incl operation of the previous iteration has generated an
updated value of the loop index.

Figure 5.1 5
Scheduling of
operations for integer
multiplication with
unlimited number
of execution units.
The 4 cycle latency of
the multiplier is the
performance-limiting
resource.

Section 5.7 Understanding Modern Processors 405

The computation graph shows the parallel execution of operations by the
Execution unit. On each cycle, all of the operations on one horizontal line of the
graph execute in parallel. The graph also demonstrates out-of-order, speculative
execution. For example, the incl operation in one iteration is executed before
the j 1 instruction of the previous iteration has even begun. We can also see the
effect of pipelining. Each iteration requires at least seven cycles from start to
end, but successive iterations are completed every four cycles. Thus, the effective
processing rate is one iteration every four cycles, giving a CPE of 4.0.

The four-cycle latency of integer multiplication constrains the performance
of the processor for this program. Each imull operation must wait until the
previous one has completed, since it needs the result of this multiplication before
it can begin. In our figure, the multiplication operations begin on cycles 4,8, and
12. With each succeeding iteration, a new multiplication begins every fourth cycle.

Figure 5.16 shows the first four iterations of combine4 for integer addition
on a machine with an unbounded number of functional units W~th a single-cycle
combining operation, the program could achieve a CPE of 1.0. We see that as the
iterations progress, theExecution unit would perform parts of seven operations on
each clock cycle. For example, in cycle 4 we can see that the machine is executing
the add1 for iteration 1; different parts of the load operations for iterations 2,3,
and 4; the j 1 for iteration 2; the cmpl for iteration 3; and the incl for iteration 4.

Scheduling of Operations with Resource Constraints

Of course, a real processor has only a fixed set of functional units. Unlike our
earlier examples, where the performance was constrained only by the data depen-
dencies and the latencies of the functional units, performance becomes limited by
resource constraints as well. In particular, ourprocessor has only two units capable
of performing integer and branch operations. In contrast, the graph of Figure 5.15
has three of these operations in parallel on cycles 3 and four in parallel on cycle 4.

Iteration 4

Figure 5.16 Scheduling of operations for integer addition with unbounded resource constraints.
With unbounded resources the processor could achieve a CPE of 1 .O.

406 Chapter 5 Optimizing Program Performance

Figure 5.17 shows the scheduling of the operations for combine4 with integer
multiplication on a resource-constrained processor. We assume that the general
integer unit and the branchlinteger unit can each begin a new operation on every
clock cycle. It is possible to have more than two integer or branch operations
executing in parallel, as shown in cycle 6, because the imull operation isin its
third cycle by this point.

With constrained resources, our processor must have some scheduling policy
that determines which operation to perform whenit has more than one choice. For
example, in cycle 3 of the graph of Figure 5.15: we show three integer operations

Iteration 4

Figure 5.17 Scheduling of operations for integer multiplication with actual resource constraints. The
multiplier latency remains the performance-limiting factor. - .

Section 5.7 Understanding Modern Processors 407

being executed: the j i of iteration 1, the cmpl of iteration 2, and the incl of
iteration 3. For Figure 5.17, we must delay one of these operations. We do so by
keeping track of the program order for the operations, that is, the order in which
the operations would be performed if we executed the machine-level program in
strict sequence. We then give priority to the operations according to their program
order. In this example, we would defer the incl operation, since any operation
of iteration 3 is later in program order than those of iterations 1 and 2. Similarly,
in cycle 4, we would give priority to the imull operation of iteration 1 and the
j 1 of iteration 2 over that of the incl operation of iteration 3.

For this example, the limited number of functional units does not slow down
our program. Performance is still constrained by the four-cycle latency of integer
multiplication.

For the case of integer addition, the resource constraints impose a clear lim-
itation on program performance. Each iteration requires four integer or branch
operations, and there are only two functional units for these operations. Thus, we
cannot hope to sustain a processing rate any better than two cycles per iteration.
In creating the graph for multiple iterations of combine4 for integer addition,
an interesting pattern emerges. Figure 5.18 shows the scheduling of operations
for iterations 4 through 8. We chose this range of iterations because it shows a
regular pattern of operation timings. Observe how the timing of all operations
in iterations 4 and 8 is identical, except that the operations in iteration 8 occur
eight cycles later. As the iterations proceed, the patterns shown for iterations 4
to 7 would keep repeating. Thus, we complete four iterations every eight cycles,
achieving the optimum CPE of 2.0.

Summary of combine4 Performance

We now can consider the measured performance of combine4 for all four com-
binations of data type and combining operations:

L I I I

Lcombined (394 1 Accumulate in temporary 1 2.00 4.00 / 3.00 5.00
-

With the exception of integer addition, these cycle times nearly match the
latency for the combining operation, as shown in Figure 5.12. Our transformations
to this point have reduced the CPE value to the point where the time for the
combining operation becomes the limiting factor.

For the case of integer addition, we have seen that the limited number of func-
tional units for branch and integer operations limits the achievable performance.
With four such operations per iteration, and just two functional units, we cannot
expect the program to go faster than 2 cycles per iteration.

In general, processor performance is limited by three types of constraints.
Fist, the data dependencies in the program force some operations to delay until
their operands have been computed. Since the functional units have latencies of
one or more cycles, this places a lower bound on the number of cycles in which a

Function Page Method Integer I Floating point
+ * + *

408 Chapter 5 Optimizing Program Performance

m

13

14 --- ..-...p-<

15
.8

16

17

18

Iteration 8

Figure 5.18 Scheduling of operations for integer addition with actual resource constraints. The limitation to
two integer units constrains performance to a CPE of 2.0.

given sequence of operations can be performed. Second, the resource constraints
limit how many operations can be performed at any given time. We have seen
that the limited number of functional units is one such resource constraint. Other
constraints include the degree of pipelining by the functional units, as well as lim-
itations of other resources in the ICU and the EU. For example, an Intel Pentium
I11 can only decode three instructions on every clock cycle. Finally, the success
of the branch prediction logic constrains the degree to which the processor can
work far enough ahead in the instruction stream to keep the execution unit busy.
Whenever a misprediction occurs, a significant delay occurs getting the processor
restarted at the correct location.

5.8 Reducing Loop Overhead

The performance of combine4 for integer addition is limited by the fact that
each iteration contains four instructions, with only two functional units capable
of perkrming them. Only one of these four instructions operates on the program
data. The others are part of the loop overhead of computing the loop index and
testing the loop condition.

Section 5.8 Reducing Loop Overhead 409

1 / + Unroll loop by 3 * /

2 void combine5(vecqtr v, data-t *dest)
3 I
4 int length = vec-length(v);
5 int limit = length-2;
6 data-t *data = get-vec-start(v);
7 data-t x = IDENT;
8 int i;
9

10 / * Combine 3 elements at a time * I
11 for (i = 0; i < limit; i+=3) {
12 x = x OPER dataril OPER data[i+ll OPER data[i+2];
13 1
14
15 / * Finish any remaining elements * /
16 for (; i < length; i++) {

17 x = x OPER data[il;
18 1
19 *dest = x;
20 1

Figure 5.19 Unrolling loop by 3. Loop unrolling can reduce the effect of loop overhead.

We can reduce overhead effects by performing more data operations in each
iteration, using a technique known as loop unrolling. The idea is to access and
combine multiple array elements within a single iteration. The resulting program
requires fewer iterations, leading to reduced loop overhead.

Figure 5.19 shows a version of our combining code using three-way loop un-
rolling. The first loop steps through the array three elements at a time. That is,
the loop index i is incremented by three on each iteration, and the combining
operation is applied to array elements i , i + 1, and i + 2 in a single iteration.

In general, the vector length will not be a multiple of 3. We want our code
to work correctly for arbitrary vector lengths. We account for this requirement
in two ways. We first make sure the first loop does not overrun the array bounds.
For a vector of length n , we set the loop limit to be n - 2. We are then assured
that the loop will only be executed when the loop index i satisfies i < n - 2 , and
hence the maximum array index i + 2 will satisfy i + 2 < (n - 2) + 2 = n. In
general, if the loop is unrolled by k , we set the upper limit to be n - k + 1. The
maximum loop index i + k - 1 will then be less than n. In addition to this, we add
a second loop to step through the h a 1 few elements of the vector one at a time.
The body of this loop will be executed between 0 and 2 times.

410 Chapter 5 Optimizing Program Performance

To better understand the performance of code with loop unrolling, let us look
at the assembly code for the inner loop and its translation into operations:

-Assembly Instructions I EX^& unit operations -1 -

.L49:
add1 (%eax,%edx,4),%ecx

add1 4 (%eax, %edx,4), %ecx

load (%eax, %edx.O, 4) i t.la
add1 t.la, %ecx.Oc i %ecx. la
load 4 (%eax, %edx. 0, 4) i t. lb
add1 t.lb, %ecx.la i %ecx. lb

add1 8(%eax,%edx,4),%ecx

add1 %edx , 3
cmpl %esi,%edx

As mentioned earlier, loop unrolling by itself will only help the performance of the
codefor the case of integer sum, because our other cases are limited by the latency

load 8(%eax, Bedx.0, 4) i t.lc
add1 t.lc, %ecx.lb i %ecx. lc

add1 %edx.O, 3 i %edx. 1
cmpl %esi, %edx.l i cc. 1

1 jl . ~ 4 9

of the functional units. For integer sum, three-way unrolling allows us to combine

ji-taken cc.1 - 2

three elements with six integer/branch operations, as showi in Figure 5.20. With
two functional units for these operations, we could potentially achieve a CPE of
1.0. Figure 5.21 shows that once we reach iteration 3 (i = 6), the operations
would follow a regular pattern. The operations of iteration 4 (i = 9) have the
same timings, but shifted by three cycles. This would indeed yield a CPE of 1.0.

Our measurement for this function shows a CPE of 1.33, that is, we require
four cycles per iteration. Evidently some resource constraint we did not account
for in our analysis delays the computation by one additional cycle per iteration.
Nonetheless, this performance represents an improvement over the code that did
not use loop unrolling.

Figure 5.20 Operations for first iteration of inner loop of three-way unrolled integer addition. With this degree of
loop unrolling we can combine three array elements using six integerlbranch operations.

%edx. 0

--
Execution unit operations- 3
load (%eax, Bedx.0, 4) i t.la
add1 t.la, %ecx.Oc + %ecx.la
load 4(%eax, %edx.O, 4) i t.1b
add1 t.lb, %ecx.la + %ecx. lb
load 8(%cax, %edx.O, 4) i t.lc
add1 t.lc, %ecx.lb i %ecx. lc
add1 %edx.O, 3 i %edx.l
cmpl %esi, %edx.l + cc.1
jl-taken cc.1

%ecx.oc

-+

Section 5.8 Reducing Loop Overhead 41 1

Figure 5.21 Scheduling of operations for three-way unrolled integer sum with bounded resource
constraints. In principle, the procedure can achieve a CPE of 1.0. The measured CPE, however, is
1.33.

Measuring the performance for different degrees of unrolling yields the fol-
lowing values for the CPE:

As these measurements show, loop unrolling can reduce the CPE. With the loop
unrolled by a factor of two, each iteration of the main loop requires three clock
cycles, giving a CPE of 312 = 1.5. As we increase the degree of unrolling, we
generally get better performance, nearing the theoretical CPE limit of 1.0. It is
interesting to note that the improvement is not monotonic: Unrolling by three
gives better performance than does unrolling by four. Evidently, the scheduling
of operations on the execution units is less efficient for the latter case.

Our CPE measurements do not account for overhead factors such as the cost
of the procedure call and of setting up the loop. With loop unrolling, we introduce
a new source of overhead-the need to finish any remaining elements when the
vector length is not divisible by the degree of unrotling. To investigate the impact
of overhead, we measure the net CPE for different vector lengths. The net CPE is
computed as the total number of cycles required by the procedure divided by the
number of elements. For the different degrees of unrolling, and for two different
vector lengths, we obtain the following data:

Vector length

CPE

Degree of unrolling
1 2 3 4 8 16

2.00 1.50 1.33 1.50 1.25 1.06

412 Chapter 5 Optimizing Program Performance

I Vector length I Degree of unrolling 7

31 Net CPE 4.02 3.57 3.39 3.84 3.91 3.66

The distinction between CPE and net CPE is minimal for long vectors, as
seen with the measurements for length 1024, but the impact is significant for short
vectors, as seen with the measurements for length 31. Our measurements of the
net CPE for a vector of length 31 demonstrate one drawback of loop ~ ~ 0 l l i n g .
Even with no unrolling, the net CPE of 4.02 is considerably higher than the 2.06
measured for long vectors. The overhead of starting and completing the loop
becomes far more significant when the loop is executed a smaller number of times.
In addition, the benefit of loop unrolling isiess significant. Our unrolled code must
start and stop twoloops, and it must complete the final elements one at a time. The
overhead decreases withincreasedloopunrolling, while the number of operations
performed in the final loop increases. With a vector length of 1024, performance
generally improves as the degree of unrolling increases. With a vector length of
31, the best performanceis achieved by unrolling the loop by only afactor of three.

A second drawback of loop unrolling is that it increases the amount of object
code generated. The object code for combine4 requires 63 bytes whereas the
object code with the loop unrolled by a factor of 16 requires 142 bytes. In this
case, that seems like a small price to pay for code that runs nearly twice as fast. In
other cases, however, the optimum position in this time-space tradeoff is not so
clear.

Aside: Getting the compiler to unroll loops.

Loop unrolling can easily be performed by a compiler. Many compilers do it routinely whenever the
optimizat~on level is set sufficiently high (for example, with optimization flag '-02'). Gcc will perform
loop unrolling when invoked with '-funroll-loops' on the command line.

5.9 Converting to Pointer Code

Before proceeding further, we should attempt one more transformation that can
sometimes improve program performance, but at the expense of program read-
ability. One of the unique features of Cis the ability tocreate and reference point-
ers to-arbitrary programobjects. Pointer arithmetic, in fact, has a close connection
to array referencing. The combination of pointer arithmetic and referencing given
by the expression * (ati) is exactly equivalent to the array reference a [i I . At
times, we can improve the performance of a program by using pointers rather than
arrays.

Figure 5.22 shows an example of converting the procedures combine4 and
combine5 to pointer code, giving procedures combinelp and combine5p, re-
spectively. Instead of keeping pointer data f i e d at the beginning of the vector,

Section 5.9 Converting to Pointer Code 413

we move it with each iteration. The vector elements are then referenced by a fixed
offset (between 0 and 2) of data. Most significantly, we can eliminate the iter-
ation variable i from the procedure. To detect when the loop should terminate,
we compute a pointer dend to be an upper bound on pointer data. Comparing
the performance of these procedures with their array counterparts yields mixed
results:

code/opt/combine.c
1 / * Accumulate in local variable, pointer verslon ' /
2 void combine4p(vecqtr v, data-t *dest)
3 I
4 int length = vec-length(v);
5 data-t *data = get-vec-start(v);
6 data-t *dend = data+length;
7 data-t x = :DENT;
8
9 for (; data < dend; data++)
10 x = x OPER *data;
11 *dest = x;
12 I

codelopt/combine.c
(a) Pointer version of combine4.

code/opt/combine. c

1 / * Unroll loop by 3, pointer version *I
2 void combine5p(vecqtr v, data-t *dest)
3 I
4 data-t *data = get-vec-start (v) ;
5 data-t *dend = data+vec-length(v1;
6 data-t *dlimit = dend-2;
7 data-t x = IDENT;
8
9 / * Combine 3 elements at a time * /
10 for (; data < dlimit; data += 3) I
11 x = x OPER data101 OPER data[l] OPER datal21;
12 I
13
14 /t Finish any remaining elements '1
15 for (; data < dend; data++)
16 x = x OPER dataL01;
17)

18 *dest = x;
19)

code/opt/combine.c
(b) Pointer version of combine5

Figure 5.22 Converting array code to pointer code. In some cases, this can lead to
improved performance.

414 Chapter 5 Optimizing Program Performance

F 1 T d

For most of the cases, the array and pointer versions have the exact same perfor-
mance. With pointer code, the CPE for integer sum with no unrolling actually gets
worse by one cycle. This result is somewhat surprising, since the inner loops for
the pointer and array versions are very similar, as shown in Figure 5.23. It is hard
to imagine why the pointer code requires an additional clock cycle per iteration.
Just as mysteriously, versions of the procedures with four-way loop unrolling yield
a one-cycle-per-iteration improvement with pointer code, giving a CPE of 1.25
(five cycles per iteration) rather then 1.5 (six cycles per iteration).

In our experience, the relative performance of pointer versus array code de-
pends on the machine, the compiler, and even the particular procedure. We have
seen compilers that apply very advanced optimizations to array code but only
minimal optimizations to pointer code. For the sake of readability, array code is
generally preferable.

Integer I Floating point
+ t .L

combine4

combine4p

combine5

combine5p

combine5x4

combine5px4

combinel: type=INT, OPER = '+ '
data i n %ear, x i n %ecx , i i n Bedx, l e n g t h i n % e s i

1 .L24: loop:
2 add1 (%eax,%edx,4) ,%ecx Add d a t a i i l t o x

3 incl %edx i++
4 cmpl %esi, %edx Compare i : 1 ength

5 jl .L24 I f <, go to loop

(a) Array code

394
413
409
413 -

combinelp: type=INT, OPER = ' + '
data i n %eax, x i n Becx, dend i n 8edu

1 .L30 : loop:
2 add1 (%eax) , %ecx Add datai01 t o x
3 add1 $4,%eax data++

4 cmpl %edx,%eax Compare da ta : dend

5 jb .L30 I f <, gc to loop

(b) Pointer code

Accumulate in temporary
Pointer version
Unroll loop x3
Pointer version
Unroll loop x 4
Pointer version

Figure 5.23 Pointer code performance anomaly. Although the two programs are very
similar in structure, the array code requires two cycles per iteration, while the pointer code
requires three.

2.00 4.00
3.00 4.00
1.33 4.00
1.33 4.00
1.50 4.00
1.25 4.00

3.00 5.00
3.00 5.00
3.00 5.00
3.00 5.00
3.00 5.00
3.00 5.00

Section 5.10 Enhancing Parallelism 415

I At times, GCC does its own version of converting array code to pointer code.
For example, with integer data and addition as the combining operation, it
generates the following code for the inner loop of a variant of combine5 that
uses eight-way loop unrolling:

. L6 :
add1 (%eax) , %edx
add1 4 (%eax) , %edx
add1 8 (%eax) , %edx
add1 12 (%eax) , %edx
add1 16(%eax),%edx
add1 20(%eax),%edx
add1 24(%eax),%edx
add1 28(%eax),%edx
add1 $32,%eax
add1 $8,%ecx
cmpl %esi,%ecx
jl .L6

I Observe how register Beax is being incremented by 32 on each iteration.
Write C code for a procedure combine5px8 that shows how pointers,

loop variables, and termination conditions are being computed by this code.
Show the general form with arbitrary data and combining operation in the
style of Figure 5.19. Describe how it differs from our handwritten pointer code

1 (Figure 5.22).

5.10 Enhancing Parallelism

At this point, our programs are limited by the latency of the functional units. As
the third column in Figure 5.12 shows, however, several functional units of the pro-
cessor are pipelined, which means that they can start on a new operation before
the previous one is completed. Our code cannot take advantage of this capability,
even with loop unrolling, since we are accumulating the value as a single variable
x. We cannot compute a new value of x until the preceding computation has com-
pleted. As a result, the processor will stall, waiting to begin a new operation until
the current one has completed. 'Ihis limitation shows clearly in Figures 5.15 and
5.17. Even with unbounded processor resources, the multiplier can only produce
a new result every four clock cycles. Similar limitations occur with floating-point
addition (three cycles) and multiplication (five cycles).

5.10.1 Loop Splitting

For a combining operation that is associative and commutative, such as integer
addition or multiplication, we can improve performance by splitting the set of
combining operations into two or more parts and combining the results at the

i

1

416 Chapter 5 Optimizing Program Performance

end. For example, let P, denote the product of elements ao, a l , . . . , a,-1:

Assuming n is even, we can also write this as P, = PE, x PO,, where PE, is the
product of the elements with even indices, and PO, is the product of the elements
with odd indices:

n/2-2

PE, = n a2i
i=O

Figure 5.24 shows code that uses this method. It uses both two-way loop
unrolling, to combine more elements per iteration, and two-way parallelism, ai-
cumulating elements with evenindex in variable xO, and elements with odd index -
in variable xl. As before, we include a second loop to accumulate any remaining

1 I* Unrcll loop by 2, 2-way parallelism * I
2 void combine6(vecqtr v, data-t *dest)
3 (
4 int length = vec-length(v);
5 int limit = length-1;
6 data-t *data = get-vec-start(v);
7 data-t xO = IDENT;
8 data-t xl = IDENT;
9 int i;
10

11 / * Combine 2 elements at a time * I
12 for (i = 0 ; i < limit; i+=2) (

13 xO = xO OPER datafi];
14 . xl=xlOPERdata[i+ll:
15 1
16

17 / * Finish any remaining elements * /
18 for (; i < length; i++) {

19 xO = xO OPER data[il;
20 I
21 *dest = xO OPER xl;
22 1

Figure 5.24 Unrolling loop by 2 and using two-way parallelism. This approach makes
use of the pipelining capability of the functional units.

Section 5.10 Enhancing Parallelism 417
I
i array elements for the case where the vector length is not a multiple of 2. We then

apply the combining operation to xO and xl to compute the h a 1 result.
,
1
!
I

To see how this code yields improved performance, let us consider the trans-
I lation of the loop into operations for the case of integer multiplication: I

-- [Execution unit operations

imull (%eax,%edx,4),%ecx

imull 4(%eax,%edx,4),%ebx

add1 $2,%edx
cmpl %esi,%edx

load (%eax, %edx.O, 4) + t. la
imull t.la, %ecx.O + %em. 1
load4(%eax, %edx.O,4) -+ t. lb
imull t.lb, %ebx.O -+ %ebx . 1
add1 $2, %edx. 0 -+ %edx.l
cmpl %esi, %edx.l -+ cc. 1

jl-taken cc.1

Figure 5.25 shows a graphical representation of these operations for the first iter-
ation (i = 0). As this diagram illustrates, the two multiplications in the loop are
independent of each other. One has register %ecx as its source and destination
(corresponding to program variable xO), while the other has register %ebx as its
source and destination (corresponding to program variable xl). The second mul-
tiplication can start just one cycle after the fust. This makes use of the pipelining
capabilities of both the load unit and the integer multiplier.

%edx. 1

Execution unit operations
load (%eax, gedx.0, 4)
imull t.la, %ecx.O
load 4(%eax, %edx.O, 41
imull t.lb, %ebx.O %ebx. 1
add1 $2, %edx.O -+ %edx.l
cmpl %esi, %edx.l -+ cc.1
jl-taken cc.1

Figure 5.25 Operations for first iteration of inner loop of two-way unrolled, two-way parallel integer
multiplication. The two multiplication operations are logically independent.

418 Chapter 5 Optimizing Program Performance

10 -
1 1

-,-- .we,-."-,

12

13 --
14

15

16
--,- -----,---,*,-. -- .,,, ~ -,-- -.~-- ,--,-

Iteration 3

Figure 5.26 Scheduling of operations for two-way unrolled, two-way parallel integer multiplication
with unlimited resources. The multiplier can now generate two values every 4 cycles.

Figure 5.26 shows a graphical representation of the first three iterations (i =
0,2, and 4) for integer multiplication. For each iteration, the two multiplications
must wait until the results from the previous iteration have been computed. Still,
the machine can generate two results every four clock cycles, giving a theoretical
CPE of 2.0. In this figure, we do not take into account the limited set of inte-
ger functional units, but this does not prove to be a limitation in this particular
procedure.

Section 5.10 Enhancing Parallelism 419

Comparing loop unrolling alone to loop unrolling with two-way parallelism,
we obtain the following performance:

For integer sum, parallelism does not help, as the latency of integer addition is
only one clock cycle. For integer and floating-point product, however, we reduce
the CPE by a factor of 2. We are essentially doubling the use of the functional
units. For floating-point sum, some other resource constraint is limiting our CPE
to 2.0, rather than the theoretical value of 1.5.

We have seen earlier that two's complement arithmetic is commutative and
associative, even when overflow occurs. Hence, for an integer data type, the result
computed by combine6 will be identical to that computed by combine5 under
all possible conditions. Thus, an optimizing compiler could potentially convert
the code shown in combine4 first to a two-way unrolled variant of combine5
by loop unrolling, and then to that of combine6 by introducing parallelism. This
is referred to as iteration splitting in the optimizing compiler literature. Many
compilers do loop unrolling automatically, but relatively few do iteration splitting.

On the other hand, we have seen that floating-point multiplication and addi-
tion are not associative. Thus, combine5 and combine6 could produce different
results due to rounding or overflow. Imagine, for example, a case in which all the
elements with even indices were numbers with very large absolute value, while
those with odd indices were very close to 0.0. Then, product PE, might overflow,
or PO, might underflow, even though the final product P, does not. In most
real-life applications, however, such patterns are unlikely. Since most physical
phenomena are continuous, numerical data tend to be reasonably smooth and
well-behaved. Even when there are discontinuities, they do not generally cause
periodic patterns that lead to a condition such as that sketched earlier.. It is
unlikely that summing the elements in strict order gives fundamentally better ac-
curacy than does summing two groups independently and then adding those sums
together. For most applications, achieving a performance gain of 2X outweighs
the risk of generating different results for strange data pattcms. Nevertheless, a
program developer should check with potential users to see if there are particular
conditions that may cause the revised algorithm to be unacceptable.

Just as we can unroll loops by an arbitrary factor k, we can also increase the
parallelism to any factor p such that k is divisible by p. The following are some
results for different degrees of unrolling and parallelism:

420 Chapter 5 Optimizing Program Performance

Integer / Floating point I
t * t * I

Unroll x 2

Unroll x4

Unroll x8

As this table shows, increasing the degree of loop unrolling and the degree of
parallelism helps program performance up to some point, but it yields diminishing
improvement or even worse performance when taken to an extreme. In the next
section, we will describe two reasons for this phenomenon.

5.10.2 Register Spilling

The benefits of loop parallelism are l i i t e d by the ability to express the compu-
tation in assembly code. In particular, the IA32 instruction set only has a small
number of registers to hold the values being accumulated. If we have a degree of
parallelism p that exceeds the number of available registers, then the compiler will
resort to spilling, storing some of the temporary values on the stack. Once this
happens, the performance drops dramatically. This occurs for our benchmarks
when we attempt to have p = 8. Our measurements show the performance for
this case is worse than that for p = 4.

For the case of the integer data type, there areonly eight totalinteger registers
available. Two of these (Bebp and Besp) point to regions of the stack. With the
pointer version of the code, one of the remaining six holds the pointer data, and
one holds the stopping position dend. This leaves only four integer registers for
accumulating values. With the array versionof the code, we require three registers
to hold the loop index i, the stopping index l i m i t , and the array address data.
This leaves only three registers for accumulating values. For the floating-point
data type, we need two of eight registers to hold intermediate values, leaving six
for accumulating values. Thus, we could have a maximum parallelism of sii before
register spilling occurs.

This limitation to eight integer and eight floating-point registers is an un-
fortunate artifact of the IA32 instruction set. The renaming scheme described
previously eliminates the direct correspondence between register names and the
actual location of the register data. In a modem processor, register names serve
simply to identlfy the program values being passed between the functional units.
IA32 provides only a small number of such identifiers, constraining the amount
of parallelism that can be expressed in programs.

The occurrence of spilling can be seen by examining the assembly code. For
example, within the first loop for the code with eight-way parallelism, we see the
following instruction sequence:

Section 5.10 Enhancing Parallelism 421

type=INT, OPER = ' * '
x6 i n -12 (% e b p) , data+i i n %eax

1 movl -12 (%ebp) , %edi Get x6 from s t a c k

2 imull 24 (%eax) , Bedi M u l t i p l y by da ta i i c61
3 movl Bedi, -12 (%ebp) Put x6 back

In this code, a stack location is being used to hold x6, one of the eight local
variables used to accumulate sums. The code loads it into a register, multiplies
it by one of the data elements, and stores it back to the same stack location. As
a general rule, whenever a compiled program shows evidence of register spilling
within some heavily used inner loop, it may be preferable to rewrite the code
so that fewer temporary values are required. This can be done by reducing the
number of local variables.

The following shows the code generated from a variant of combine6 that uses
eight-way loop unrolling and four-way parallelism.

.L152:
add1 (%eax) , %ecx
add1 4 (%eax), Besi
add1 8 (%eaxl , %edi
add1 12 (%eax) , %ebx
add1 16 (%eax) , %ecx
add1 20 (Beax), %esi
add1 24 (%eaxl , %edi
add1 28 (%eax) , %ebx
add1 S32,Beax
add1 $8,%edx
cmpl -8 (%ebp) , %edx
jl .L152

I A. What program variable has being spilled onto the stack?

B. At what location on the stack?

C. Why is this a good choice of which value to spill?

With floating-point data, we want to keep all of the local variables in the
floating-point register stack. We also need to keep the top of stack available for
loading data from memory. This limits us to a degree of parallelism less than or
equal to 7.

5.10.3 Limits to Parallelism

For our benchmarks, the main performance limitations are due to the capabili-
ties of the functional units. As Figure 5.12 shows, the integer multiplier and the
floating-point adder can only initiate a new operation every clock cycle. This,
plus a similar limitation on the load unit, limits these cases to a CPE of 1.0. The

422 Chapter 5 Optimizing Program Performance

floating-point multiplier can only initiate a new operation every two clock cycles.
This limits this case to a CPE of 2.0. Integer sum is limited to a CPE of 1.0, due to
the limitations of the load unit. This leads to the following comparison between
the achieved performance and the theoretical limits:

In this table, we have chosen the combination of unrolling and parallelism that
achieves the best performance for each case. We have been able to get close to the
theoretical limit for integer sum and product and for floating-point product. Some
machine-dependent factor (or factors) limits the achieved CPE for floating-point
multiplication to 1.50 rather than the theoretical limit of 1.0.

Consider the following function for computing the product of an array of n

integers. We have unrolled the loop by a factor of 3.

Floating point
+ *

1.50 2.00
1.00 2.00

-
Method

Achieved
Theoretical limit

int aprod(int a[], int n)
(

int i, x, y, z;
int r = 1;
for (i = 0; i < n-2: i+= 3) I

x = a[i]; y = a[i+ll; z = a[i+21;
r = r * x ' y * z; / i Product computation * /

1
for (; i n; 9 + +)

r *= a l i] ;
return r;

Integer
+ f

1.06 1.25
1.00 1.00

1

For the line labeled Product computation, we can use parentheses to
create five different associations of the computation, as follows:

We measured the five versions of the function on an Intel Pentium 111. Recall
from Figure 5.12 that the integer multiplication operation on this machine has
a latency of 4 cycles and an issue time of 1 cycle.

Section 5.1 1 Putting it Together: Summary of Results for Optimizing Combining Code 423

The table that follows shows some values of the CPE and other values
missing. The measured CPE values are those that were actually observed.
"Theoretical CPE" means that performance that would be achieved if the only
limiting factor were the latency and issue time of the integer multiplier.

Fi in the missing entries For the missing values of the measured CPE, you
can use the values from other versions that would have the same computational
behavior. For the values of the theoretical CPE, you can determine the number
of cycles that would be required for an iteration considering only the latency
and issue time of the multiplier, and then divide by 3.

5.11 Putting it Together: Summary of Results for Optimizing
Combining Code

We have now considered six versions of the combining code, some of which had
multiple variants. Let us pause to take a look at the overall effect of this effort and
how our code performs on a different machine. Figure 5.27 shows the measured
performance for all of our routines plus several other variants. As can be seen, we
achieve maximum performance for the integer sum by simply unrolling the loop
many times, whereas we achieve maximum performance for the other operations
by introducing some, but not too much, parallelism. The overall performance gain
of 27.6X and better from our original code is quite impressive.

5.1 1.1 Floating-Point Performance Anomaly

One of the most striking features of Figure 5.27 is the dramatic drop in the cy-
cle time for floating-point multiplication when we go from combine3, where the
product is accumulated in memory, to combinel, where the product is accumu-
lated in a floating-point register. By making this small change, the code suddenly
runs 23.4 times faster. When such~an unexpected result arises, it is important to
hypothesize what might have caused this behavior and then to devise a series of
tests to evaluate the hypothesis.

When we examine the table, it appears that something strange is happening
for the case of floating-point multiplication when we accumulate the results in
memory. The is far worse than for floating-point addition or inte-
ger multiplication, even though the number of cycles for the functional units are
comparable. On an IA32 processor, all floating-point operations are performed
in extended 80-bit) precision, and the floating-point registers store values in this

424 Chapter 5 Optimizing Program Performance

Function I Page I Method
combinel Abstract unoptimized
combinel Abstract -02

combine2 Move vec-length
combine3 392 Direct data access 7

Integer
+ *

42.06 41.86
31.25 33.25
20.66 21.25
6.00 9.00
2.00 4.00
1.50 4.00
1.06 4.00
1.50 2.00
1.50 2.00
1.25 1.25
39.7 33.5

394
409

416

Floating point
+ *

41.44 160.00
31.25 143.00
21.15 135.00
8.00 117.00
3.00 5.00
3.00 5.00
3.00 5.00
2.00 2.50
1.50 2.50
1.50 2.00
27.6 80.0

Accumulate in temporary
Unroll x 4
Unroll x16
Unroll x2, parallelism x2

Figure 5.27 Comparative result for all combining routines. The best performing version is shown in boldface.

Unroll x4, parallelism x2
i Unroll ~ 8 . oarallelism x 4

format. Only when the value in a register is written to memory is it converted to
32-bit (float) or 64-bit (double) format.

Examining the data used for our measurements, the source of the problem
becomes clear. The measurements were performed on a vector of length 1024
having each element i equal to i + 1. ~ e n c e , we are attempting to compute 1024!,
which is approximately 5.4 x Such a large number can be represented in the
extended-precision floating-point format (it can represent numbers up to around

but it far exceeds what can be represented as a single precision (up to
around 1e8) or double precision (up to around 10308). The single precision case
overflows when we reach i = 34, while the double precision case overflows when
we reach i = 171. Once we reach this point, every execution of the statement

f d e s t = *dest OPER va l ;

in the inner loop of combine3 requires reading the value +co, from des t, multi-
plying this by val to get tco and then storing this back at dest. Evidently, some
part of this computation requires much longer than the normal five clock cycles
required by floating-point multiplication. In fact, running measurements on this
operation, we find that it takes between 110 and 120 cycles to multiply a number
by infinity. Most likely, the hardware detected this as a special case and issued
a trap, which caused a software routine to perform the actual computation. The
CPU designers felt that such an occurrence would be sufficiently rare that they
did not need to deal with it as part of the hardware design. Similar behavior could
happen with underflow.

When we run the benchmarks on data for which every vector element equals
1.0, combine3 achieves a CPEof 10.00cycles for both double and single precision.
This is much more in line with the times measured for the other data types and
operations, and comparable to the time for combine4.

Section 5.12 Branch Prediction and Misprediction Penalties 425

Function --pF 1 Method

Abstract unoptimized
Abstract -02
Move vec-length
Direct data access
Accumulate in temporary
Unroll x4
Unroll x16
Unroll x4, parallelism x2
Unroll x8, parallelism x4

Inteeer Floating point]

1 Unroll x8, parallelism x8 1 1.11 4.24 1 2.36 2.08
Worst:best 1 36.2 11.4 (22.3 26.7

Figure 5.28 Comparative result for all combining routines running on a Compaq Alpha
21164 processor. The same general optimization techniques are useful on this machine as
well.

This example illustrates one of the challenges of evaluating program perfor-
mance. Measurements can be strongly affected by characteristics of the data and
operating conditions that initially seem insignificant.

5.1 1.2 Changing Platforms

Although we presented our optimization strategies in the context of a specific
machine and compiler, the general principles also apply to other machine and
compiler combinations. Of course, the optimal strategy may be very machine de-
pendent. As an example, Figure 5.28 shows performance results for a Compaq
Alpha 21164 processor for conditions comparable to those for the Pentium 111
shown in Figure 5.27. These measurements were taken for code generated by the
Compaq C compiler, which applies more advanced optimizations than GCC. Ob-
serve how the cycle times generally decline as we move down the table, just as they
did for the other machine. We see that we can effectively exploit a higher (eight-
way) degree of parallelism, because the Alpha has 32 integer and 32 floating-point
registers. As this example illustrates, the general principles of program opt&za-
tion apply to a variety of different'machines, even if the particular combination of
features leading to optimum performance depend on the specific machine.

5.12 Branch Prediction and Misprediction Penalties

As we mentioned previously, modern processors work well ahead of the currently
executing instructions, reading new instructions from memory, and decoding them
to determine what operations to perform on what operands. This instruction
pipelining works well as long as the instructions follow in a simple sequence.
When a branch is encountered, however, the processor must guess which way the
branch will go. For the case of a conditional jump, this means predicting whether

426 Chapter 5 Optimizing Program Performance

or not the branch will be taken. For an instruction such as an indirect jump (as
we saw in the code to jump to an address specified by a jump table entry) or a
procedure return, this means predicting the target address. In this discussion, we
focus on conditional branches.

In a processor that employs speculative execution, the processor begins exe-
cuting the instructions at the predicted branch target. It does this in a way that
avoids modifying any actual register or memory locations until the actual outcome
has been determined. If the prediction is correct, the processor simply "commits"
the results of the speculatively executed instructions by storing them in registers
or memory. If the prediction is incorrect, the processor must discard all of the
speculatively executed results, and restart the instruction fetch process at the cor-
rect location. A significant branch penalty is incurred in doing thig because the
instruction pipeline must be refilled before useful results are generated.

Until recently, the technology required to support speculative execution was
considered too costly and exotic for all but the most advanced supercomputers.
Since around 1998, however, integrated circuit technology has made it possible to
put so much circuitry on one chip that some can be dedicated to supporting branch
prediction and speculative execution. At this point, almost every processor in a
desktop or server machine supports speculative execution.

In optimizing our combining procedure, we did not observe any performance
limitation imposed by the loop structure. That is, it appeared that the only limiting
factor to performance was due to the functional units. For this procedure, the
processor was generally able to predict the direction of the branch at the end of
the loop. In fact, if it predicted the branch will always be taken, the processor
would be correct on all but the final iteration.

Many schemes have been devised for predicting branches, and many studies
have been conducted on their performance. A common heuristic is to predict that
any branch to a lower address will be taken, while any branch to a higher address
will not be taken. Branches to lower addresses are used to close loops, and since
loops are usually executed many times, predicting these branches as being taken
is generally a good idea. Forward branches, on the other hand, are used for condi-
tional computation. Experiments have shown that the backward-taken, forward-
not-taken heuristic is correct around 65% of the time. Predicting all branches as
being taken, on the other hand, has a success rate of only around 60%. Far more
sophisticated strategies have been devised, requiring greater amounts of hard-
ware. For example, the IntelPentium I1 and111 processorsuse a branch prediction
strategy that is claimed to be correct between 90% and 95% of the time [31].

We can run experiments to test the branch predication capability of a proces-
sor and the cost of a misprediction. We use the absolute value routine shown in
Figure 5.29 as our test case. This figure also shows the compiled form. For non-
negative arguments, the branch will be taken to skip over the negation instruction.
We time this function computing the absolute value of every element in an array,
with the array consisting of various patterns of f l s and -1s. For regular patterns
(e.g., all fls, all -Is, or alternating f 1 and -Is), we find the function requires
between 13.01 and 13.41 cycles. We use this as our estimate of the performance
with perfect branch condition. On an array set to random patterns of +Is and

Section 5.12 Branch Prediction and Misprediction Penalties 427

L

3
4
5

code/opi/absval.c 6

1 int absval(int val) 7

2 I 8

3 return (val<O) ? -val : val; 9

4 1 10
11

code/opi/absval.c

absval :
push1 %ebp
movl %esp,%ebp
movl 8 (%ebp) , %eax Get val
test1 %eax,%eax Test it

jge .L3 If >O, goto end
negl %eax Else, negate it

.L3: end:
movl %ebp, %esp
pop1 %ebp
ret

(a) C code. (b) Assembly code.

Figure 5.29 Absolute value code. We use this to measure the cost of branch misprediction.

-Is, we find that the function requires 20.32 cycles. One principle of random
processes is that no matter what strategy one uses to guess a sequence of values, if
the underlying process is truly random, then we will be right only 50% of the time.
For example, no matter what strategy one uses to guess the outcome of a coin
toss, as long as the coin toss is fair, our probability of success is only 0.5. Thus, we
can see that a mispredicted branch with this processor incurs a penalty of around
14 clock cycles, since a misprediction rate of 50% causes the function to run an
average of 7 cycles slower. This means that calls to absval require between 13
and 27 cycles depending on the success of the branch predictor.

This penalty of 14 cycles is quite large. For example, if our prediction accuracy
were only 65%, then the processor would waste, on average, 14 x 0.35 = 4.9 cycles
for every branch instruction. Even with the 90 to 95% prediction accuracy claimed
for the Pentium I1 and 111, around one cycle is wasted for every branch due to
mispredictions. Studies of actual programs show that branches constitute about
15% of all executed instructions in typical "integer" programs (i.e., those that do
not process numeric data), and around 3 to 12% of all executed instructions in
typical numeric programs [33]. n u s , any wasted time due to inefficient branch
handling can have a significant effect on processor performance.

Many data dependent branches are not at all predictable. For example, there
is no basis for guessing whether an argument to our absolute value routine will
be positive or negative. To improve performance on code involving conditional
evaluation, many processor designs have been extended to include conditional
move instructions. These instructions allow some forms of conditionals to be
implemented without any branch instructions.

With the IA32 instruction set, a number of different crnov instructions were
added starting with the PentiumPro. These instructions are supported by all recent
Intel and Intel-compatible processors and perform an operation similar to the C
code

if (COND)
x = y;

428 Chapter 5 Optimizing Program Performance

where y is the source operand and x is the destination operand. The condition
COND determining whether the copy operation takes place is based on some
combination of condition code values, similar to the test and conditional jump
instructions. As an example, the cmovll instruction perfoms a copy when the
condition codes indicate a value less than zero. Note that the first '1' of this
instruction indicates "less," while the second is the GAS suffix for long word.

The following assembly code shows how to implement absolute value with a
conditional move:

1 movl 8 (%ebp) ,%eax Get val as result

2 movl %eax,%edx Copy to Be&

3 negl %edx Negate Bedx

4 test1 %eax,%eax Test val
5 Conditionally move Be& to Beax

6 cmovll %edx,%eax ~f < O, copy Be& to result

As this code shows, the strategy is to set val as a return value, compute -val,
and conditionally move it to register %eax to change the return value when val
is negative. Our measurements of this code shows that it runs for 13.7 cycles
regardless of the data patterns. 'This clearly yields better overall performance
than a procedure that requires between 13 and 27 cycles.

A friend of yours has written an optimizing compiler that makes use of condi-
tional move instructions. You try compiling the following C code:

1 / - Dertference pointer or return 0 i f null * /
2 int deref(int *xp)
3 (
4 return xp ? *xp : 0;

1 The compiler generates the following code for the body of the procedure.

1 movl8(%ebp),%edx Get xp
2 movl (%edx) ,%eax Get *xp as result
3 test1 %edx,%edx Test xp

4 cmovll %edx,%eax If 0, copy 0 to result

Explain why this code does not provide a valid implementation of deref

The current version of GCC does not generate any code using conditional
moves Due to a desire to remain compatible with earlier 486 and Pentium pro-
cessors, the compiler does not take advantage of these new features. In our ex-
periments, we used the handwritten assembly code shown above. A version using
GCC'S facility to embed assembly code within a C program (Section 3.15) required
17.1 cycles due to poorer quality code generation.

Unfortunately, there is not much a C programmer can do to improve the
branch performance of aprogram, except torecognize that data-dependent branches

Section 5.1 3 Understanding Memory Performance 429

incur a high cost in terms of performance. Beyond this, the programmer has little
control over the detailed branch structure generated by the compiler, and it is
hard to make branches more predictable. Ultimately, we must rely on a combina-
tion of good code generation by the compiler to minimize the use of conditional
branches, and effective branch prediction by the processor to reduce the number
of branch mispredictions.

5.1 3 Understanding Memory Performance

All of the code we have written thus far, and all the tests we have run, require
relatively small amounts of memory. For example, the combining routines were
measured over vectors of length 1024, requiring no more than 8,096 bytes of data.
All modern processors contain one or more cache memories to provide fast access
to such small amounts of memory. All of the timings in Figure 5.12 assume that
the data being read or written is contained in cache. In Chapter 6, we go into
much more detail about how caches work and how to write code that makes best
use of the cache.

In this section, we will further investigate the performance of load and store
operations while maintaining the assumption that the data being read or written
are held in cache. As Figure 5.12 shows, both of these units have a latency of 3, and
an issue time of 1. All of our programs so far have used only load operations, and
they have had the property that the address of one load depended on incrementing
some register, rather than as the result of another load. Thus, as shown in Fig-
ures 5.15 to 5.18,5.21 and 5.26, the load operations could take advantage of pipelin-
ing to initiate new load operations on every cycle. 'Ihe relatively long latency of
the load operation has not had any adverse affect on program performance.

5.1 3.1 Load Latency

As an example of code whose performance is constrained by the latency of the load
operation, consider the function l i s t - l en , shown in Figure 5.30. This function
computes the length of a linked list. In the loop of this function, each succes-

I sive value of variable i s depends on the value read by the pointer reference
Is->next. Our measurements show that function l i s t - l e n has a CPE of 3.00,
which we claim is a direct reflection of the latency of the load operation. To see
this, consider the assembly code for the loop and the translation of its first iteration
into operations:

Assembly Instructions 1 Execution unit operations
.L27:

Each successive value of register %edx depends on the result of a load operation
having %edx as an operand. Figure 5.31 shows the scheduling of operations for

incl %eax

movl i%edx),%edx

test1 %edx,%edx

jne .L27

incl %eax.O + Beax.1

load (Bedx.0) + Bedx.1
test1 %edx.l,%edx.l + cc.1

jne-taken cc . 1

430 Chapter 5 Optimizing Program Performance

1 typedef s t r u c t ELE (

2 s t r u c t ELE *next;
3 i n t data;
4) l i s t - e l e , * l i s t g t r ;
5

6 i n t l i s t - l e n (1 i s t g t r i s)
7 (
8 i n t l en = 0;
9
10 f o r (; I s ; I s = Is->next)
11 len++;
1 2 re turn len;
13)

coddop t4ist.c

Figure 5.30 Linked list functions. These illustrate the latency of the load operation.

Iteration 3

Figure 5.31 Scheduling of operations for list length function. The latency of the load
operation limitr the CPE to a minimum of 3.0.

Section 5.1 3 Understanding Memory Performance 431

the first three iterations of this function. As can be seen, the latency of the load
operation limits the CPE to 3.0.

5.13.2 Store Latency

In all of our examples thus far, we have interacted with the memory only by using
the load operation to read from a memory location into a register. Its counterpart,
the store operation, writes a register value to memory. As Figure 5.12 indicates,
this operation also has a nominal latency of three cycles, and an issue time of
one cycle. However, its behavior and its interactions with load operations involve
several subtle issues.

As with the load operation, in most cases, the store operation can operate in a
fully pipelined mode, beginning a new store on every cycle. For example, consider
the functions shown in Figure 5.32 that set the elements of an array des t of length
n to zero. Our measurements for the first version show a CPE of 2.00. Since each
iteration requires a store operation, it is clear that the processor can begim a new

coddoptlcopy.c

1 / * Set element of array to 0 * /
2 void array-clear(int *src, int *dest, int n)
3 (
4 int i;
5
6 for (i = 0; i < n; it+)
7 dest[il = 0;
8 I
9

10 I * Set elements of array to 0, unrolling by 8 * I
11 void array-clear-glint *src, int *dest, int n)
12 {
13 int i;
14 int len = n - 7;
15

16 for (i = 0; i < len; i+=8) {
17 dest[il = 0;
18 dest[i+ll = 0;
19 dest[i+Zl = 0;
20 dest[i+31 = 0;
2 1 destiit41 = 0;
22 destrit51 = 0;
2 3 dest[i+61 = 0;
2 4 destLit71 = 0;
2 5 I
26 for (; i < n; it+)
27 dest[il = 0;
28 I

coddoptlcopy.c

Figure 5.32 Functions to clear array. These illustrate the pipelining of the store operation.

432 Chapter 5 Optimizing Program Performance

store operation at least once every 2 cycles. To probe further, we try unrolling
the loop eight times, as shown in the code for array-clear-8. For this one, we
measure a CPE of 1.25. That is, eachiteration requires around 10 cycles and issues
eight store operations. Thus, we have nearly achieved the optimum limit of one
new store operation per cycle.

Unlike the other operations we have considered so far, the store operation
does not affect any register values. Thus, by their very nature a series of store op-
erations must be independent from each other. In fact, only a load operation is af-
fectedby the result of a store operation, since only aload can read back thememory
location that has been written by the store. The function write-read shown in
Figure 5.33 illustrates the potential interactions between loads and stores. This fig-
ure also shows two example executions of this function, when it is called for a two-
element array a, with initial contents -10 and 17, and with argument cn t equal
to 3. These executions illustrate some subtleties of the load and store operations.

1 / * Write to desr, read from src * /
2 void write-read(int *src, int *dest, int n)
3 {
4 int cnt = n;
5 int val = 0;
6

7 while (cnt--) {
8 'dest = val;
9 val = (*src) +I;
10 1
11 1

Example A: wrlte-read(ha[Ol, ha[:], 3)

cnt

val

Example 6: write_read(&a [OI .ha LO1 . 3)

I Initial I (Her. 1 I (Iter. 2 1 (Iter. 3 I
cn: iel
val

Figure 5.33 Code to write and read memory locations, along with illustrative
executions. This function highlights the interactions between stores and loads when
arguments src and dest are equal.

Section 5.1 3 Understanding Memory Performance 433

In example A of Figure 5.33, argument src is a pointer to array element
a [0 I , while dest is a pointer to array element a [1 I . In this case, each load by
the pointer reference *src will yield the value -10. Hence, after two iterations,
the array elements will remain h e d at -10 and -9, respectively. The result of
the read from src is not affected by the write to dest. Measuring this example
over a larger number of iterations gives a CPE of 2.00.

In example B of Figure 5.33(a), both arguments src and dest are pointers
to array element a [0 I . In this case, each load by the pointer reference *src
will yield the value stored by the previous execution of the pointer reference
*dest. As a consequence, a series of ascending values will be stored in this
location. In general, if function write-read is called with arguments src and
des t pointing to the same memory location, and with argument cnt having some
value n > 0, the net effect is to set the location to n - 1. This example illustrates a
phenomenon we will call writdread dependency-the outcome of a memory read
depends on a very recent memory write. Our performance measurements show
that example B has a CPE of 6.00. The writelread dependency causes a slowdown
in the processing.

To see how the processor can distinguish between these two cases and why
one runs slower than the other, we must take a more detailed look at the load
and store execution units, as shown in Figure 5.34. The store unit contains a
store buffer containing the addresses and data of the store operations that have
been issued to the store unit, but have not yet been completed, where completion
involves updating the data cache. This buffer is provided so that a series of store
operations can be executed without having to wait for each one to update the
cache. When a load operation occurs, it must check the entries in the store buffer
for matching addresses. If it finds a match, it retrieves the corresponding data
entry as the result of the load operation.

Figure 5.34 Detail of load and store units. The store
unit maintains a buffer of pending writes. The \oad
unit must check its address with those in the store unit
to detect a writelread dependency.

434 Chapter 5 Optimizing Program Performance

The assembly code for the inner loop and its translation into operations during
the first iteration is as follows:

~ t r u c t i o n s I Execution unit operations
.L32:

movl %edx, (%ecx)

movl (%ebx) , %edx
incl %edx
decl %eax
inc .L32

storeaddr (%ecx)
storedata %edx.O
load (%ebx) + %edx. la
incl %edx.la + %edx.lb
decl Seax.0 + %eax. 1
inc-taken cc.1

Observe that the instruction movl %edx, (%ecx) is translated into two opera-
tions: The storeaddr instruction computes the address for the store operation,
creates an entry in the store buffer, and sets the address field for that entry. The
storedata instruction sets the data field for the entry. Since there is only one
store unit, and store operations are processed in program order, there is no arnbi-
guity about how the two operations match up. As we will see, the fact that these
two computations are performed independently can be important to program
performance.

Figure 5.35 shows the timing of the operations for the first two iterations
of write-read for the case of example A. As indicated by the dotted line be-
tween the storeaddr and load operations, the storeaddr operation creates
an entry in the store buffer, which is then checked by the load. Since these
are unequal, the load proceeds to read the data from the cache. Even though
the store operation has not been completed, the processor can detect that it will

Iteration 2

Figure 5.35 Timing of writelead for example A. The store and load operations have different
addresses, and so the load can proceed without waiting for the store.

Section 5.1 3 Understanding Memory Performance 435

affect a different memory location than the load is trying to read. This process
is repeated on the second iteration as well. Here we can see that the store-
data operation must wait until the result from the previous iteration has been
loaded and incremented. Long before this, the storeaddr operation and the
load operations can match up their addresses, determine they are different, and
allow the load to proceed. In our computation graph, we show the load for the
second iteration beginning just 1 cycle after the load from the first. If contin-
ued for more iterations, we would find the graph indicates a CPE of 1.0. Evi-
dently, some other resource constraint limits the actual performance to a CPE
of 2.0.

Figure 5.36 shows the timing of the operations for the first two iterations
of write-read for the case of example B. Again, the dotted line between the
storeaddr and load operations indicates that the storeaddr operation cre-
ates an entry in the store buffer which is then checked by the load. Since these
are equal, the load must wait until the storedata operation has completed, and
then it gets the data from the store buffer. 'This waiting is indicated in the graph
by a much more elongated box for the load operation. In addition, we show a

a 6 - o "------
Iteration 1

Iteration 2

Figure 5.36 Timing of write-read for example B. The store and load operations have the same ad-
dress, and hence the load must wait until it can get the result from the store.

436 Chapter 5 Optimizing Program Performance

dashed arrow from the storedata to the load operations to indicate that the
result of the storedata is passed to the load as its result. Our timings of these
operations are drawn to reflect the measured CPE of 6.0. Exactly how this timing
arises is not totally clear, however, and so these figures are intended to be more
illustrative than factual. In general, the processorlmemory interface is one of the
most complex portions of a processor design. Without access to detailed docu-
mentation and machine analysis tools, we can only give a hypothetical description
of the actual behavior.

As these two examples show, the implementation of memory operations in-
volves many subtleties. With operations on registers, the processor can determine
which instructions will affect which others as they are being decoded into opera-
tions. With memory operations, on the other hand, the processor cannot predict
which will affect which others until the load and store addresses have been com-
puted. Since memory operations make up a signiiicant fraction of the program, the
memory subsystem is optimized to run with greater parallelism for independent
memory operations.

As another example of wde with potential load-store interactions, consider the
following function to copy the contents of one array to another:

1 void copy-array(int *src, int *dest, int n)
2 (
3 int i;
4

5 for (i = 0; i < n; it+)
6 dest[il = src[il;
7: 1

Suppose a is an array of length 1000 initialized so that each element a [i]
equals i .

(A. What would be the effect of the call copy-array (a t l , a , 9 9 9) ?

(B. What would be the effect of the call copy-array (a , a t l , 9 9 9) ?

C. Our performance measurements indicate that the call of part A has a CPE
of 3.00, while the call of part B has a CPE of 5.00. To what factor do you
attribute this performance difference? 1 D. What performancewould you expect for thecall copy-array (a , a , 999) ?

5.14 Life in the Real World: Performance Improvement
Techniques

Although we have only considered a limited set of applications, we can draw
important lessons on how to write efficient code. We have described a number of
basic strategies for optimizing program performance:

Section 5.15 ldentifying and Eliminating Performance Bottlenecks 437

1. High-level design. Choose appropriate algorithms and data structures for the
problem at hand. Be especially vigilant to avoid algorithms or coding tech-
niques that yield asymptotically poor performance.

2. Basic codingprinciples. Avoid optimization blockers so that a compiler can
generate efficient code.

Eliminate excessive function calls. Move computations out of loops when
possible. Consider selective compromises of program modularity to gain
greater efficiency.

a Eliminate unnecessary memory references. Introduce temporary vari-
ables to hold intermediate results. Store a result in an array or global
variable only when the final value has been computed.

3. Low-level optimizations.

Try various forms of pointer versus array code.
a Reduce loop overhead by unrolling loops. /. a . .

Find ways to make use of the pipelined functional units by techniques .. .
, . ,

such as iteration splitting. ... 3 ' , , i .

A final word of advice to the reader is to be careful to avoid expending effort
on misleading results. One useful technique is to use checking code to test each
version of the code as it is being optimized to make sure no bugs are introduced
during this process. Checking code applies a series of tests to the programand
makes sure it obtains the desired results. It is very easy to make mistakes wheI;'ahe
is introducing new variables, changing loop bounds, and makin'$ the code &re
complex overall. In addition, it is important to notice any unusual or unexpe~fed
changes in performance. As we have shown, the selection of the b e n c h w k
data can make a big difference in performance comparisons dueto perfor&ibce
anomalies, and because we are only executing short instruction sequences.

5.15 ldentifying and Eliminating Performance Bottlenecks

Up to this point, we have only considered optimizing small programs, where there
is some clear place in the program that requires optimization. When working
with large programs, even knowing where to focus our optimizations efforts can
be diicult. In this section, we describe how to use code profilers, analysis tools
that collect performance data about a program as it executes. We also present a
general principle of system optimization known as Amdahl's law.

5.15.1 Program Profiling

Program profiling involves running a version of a program in which instrurnenta-
tion code has been incorporated to determine how much time the different parts
of the program require. It can be very useful for identifying the parts of a program
we should focus on in our optimization efforts. One strength of profiling is that it
can be performed while running the actual program on realistic benchmark data.

438 Chapter 5 Optimizing Program Performance

Unix systems provide the profiling program GPROF. This program generates
two forms of information. First, it determines how much CPU time was spent
for each of the functions in the program. Second, it computes a count of how
many times each function gets called, categorized by which function performs the
call. Both forms of information can be quite useful. The timings give a sense of
the relative importance of the different functions in determining the overall run
time. The calling information allows us to understand the dynamic behavior of
the program.

Profiling with GPROF requires three steps, as shown for a C program, prog . C,
which runs with the command line argument file . t x t :

1. The program must be compiled and linked for profiling. With GCC (and other
C compilers) this involves simply including the run-time flag '-pg' on the com-
mand line:

unix> gcc -02 -pg pr0g.c -0 proy

2. The program is then executed as usual:

unix> . /pro9 file. txt

It runs slightly (up to a factor of two) slower than normal, but otherwise the
only difference is that it generates a file w o n . out.

3. GPROF is invoked to analyze the data in gmon. out.

unix> gprof prog

The first part of the profile report lists the times spent executing the different
functions, sorted in descending order. As an example, the following listing shows
this part of the report for the first three functions in a program:

% cumulative self self total

time seconds seconds calls ms/call ms/call name
8 5 . 6 2 7 . 8 0 7 . 8 0 1 7 8 0 0 . 0 0 7 8 0 0 . 0 0 sort-words

6 . 5 9 8 . 4 0 0 . 6 0 946596 0 .00 0 . 0 0 find-ele-rec
4.50 8.81 0.41 946596 0 . 0 0 0 .00 lower1

Each row represents the time spent for all calls to some function. The first column
indicates the percentage of the overall time spent on the function. The second
shows the cumulative time spent by the functions up to and including the one on
this row. The third shows the time spent on this particular function, and the fourth
shows how many times it was called (not counting recursive calls). In our example,
the function sort-words was called only once, but this single call required 7.80
seconds, while the function lowerl was called 946,596 times, requiring a total of
0.41 seconds.

Section 5.15 Identifying and Eliminating Performance Bottleneck, 439

The second part of the profile report shows the calling history of the function.
The following is the history for a recursive function f ind-ele-rec:

4872758 f i n d - e l e - r e c [5]
0 . 6 0 0 . 0 1 946596/946596 i n s e r t - s t r i n g [4]

[51 6 . 7 0 .60 0 . 0 1 946596+4872758 f i n d - e l e - r e c [5]
0 . 0 0 0 . 0 1 26946/26946 s a v e - s t r i n g [9]
0 . 0 0 0 .00 26946126946 new-ele [I l l

4872758 f i nd -e l e - r ec [5]

?his history shows both the functions that called f ind-ele-rec, as well as the
functions that it called. In the upper part, we find that the function was actu-
ally called 5,819,354 times (shown as " 9 4 65 96+4872 7 5 8")--4,872,758 times by
itself, and 946,596 times by function in se r t - s t r i ng (which itself was called
946,596 times). Function find-ele-rec in turn called two other functions:
s a v e - s t r i n g and n e w - e l e , each a total of 26,946 times.

From this calling information, we can often infer useful information about
the program behavior. For example, the function f ind-ele-rec is a recursive
procedure that scans a linked list looking for a particular string. Given that the
ratio of recursive to top-level calls was 5.15, we can infer that it required scanning
an average of around six elements each time.

Some properties of GPROF are worth noting:

The timing is not very precise. It is based on a simple interval counting
scheme, as will be discussed in Chapter 9. In brief, the compiled program
maintains a counter for each function recording the time spent executing
that function. The operating system causes the program to be interrupted at
some regular time interval 6. Typical values of S range between 1.0 and 10.0
milliseconds. It then determines what function the program was executing
when the interrupt occurs and increments the counter for that function by
6. Of course, it may happen that this function just started executing and will
shortly be completed, but it is assigned the full cost of the execution since
the previous interrupt. Some other function may run between two interrupts
and therefore not be charged any time at all.

Over a long duration, this scheme works reasonably well. Statistically,
every function should be charged according to the relative time spent exe-
cuting it. For programs that run for less than around one second, however,
the numbers should be viewed as only rough estimates.
The calling information is quite reliable. The compiled program maintains a
counter for each combination of caller and callee. The appropriate counter
is incremented every time a procedure is called.
By default, the timings for library functions are not shown. Instead, these
times are incorporated into the times for the calling functions

5.15.2 Using a Profiler to Guide Optimization

As an example of using a profiler to guide program optimization, we created an
application that involves several different tasks and data structures. This applica-
tion reads a text file, creates a table of unique words and how many times each

440 Chapter 5 Optimizing Program Performance

word occurs, and then sorts the words in descending order of occurrence. As a
benchmark, we ran it on a file consisting of the complete works of Wdliam Shake-
speare. From this, we determined that Shakespeare wrote a total of 946,596 words,
of which 26,946 are unique. The most common word was "the," occurring 29,801
times. The word "love" occurs 2249 times, while "death occurs 933 times.

Our program consists of the following parts. We created a series of versions,
starting with simple algorithms for the different parts and then replacing them
with more sophisticated ones:

1. Each word is read from the file and converted to lowercase. Our initial version
used the function lower1 (Figure 5.7), which we know to have quadratic
complexity.

2. A hash function is applied to the string to create a number between 0 and s - 1,
for a hash table with s buckets. Our initial function simply summed the ASCII
codes for the characters modulo s.

3. Each hash bucket is organized as a linked list. The program scans down this
- ~

list looking for a matching entry. If one is found, the frequency for this word
is incremented. Otherwise, a new list element is created. Our initial version
performed this operation recursively, inserting new elements at the end of the
list.

4. Once the table has been generated, we sort all of the elements according to
the frequencies. Our initial version used insertion sort.

Figure 5.37 shows thepro6le results for different versions of our word-frequency
analysis program. For each version, we divide the time into five categories:

Sort: Sorting the words by frequency.

List: Scanning the linked list for a matching word, inserting a new element if
necessary.

Lower: Converting the string to lower case.

Hash: Computing the hash function.

Rest: The sum of all other functions.

As part (a) of the figure shows, our initial version requires over 9 seconds, with
most of the time spent sorting. This is not surprising, since insertion sort has
quadratic complexity, and the program sorted nearly 27,000 values.

In our next version, we performed sorting using the library function q s o r t ,
which is based on the quicksort algorithm. This version is labeled "Quicksort" in
the figure. The more efficient sorting algorithm reduces the time spent sorting to
become negligible, and the overall run time to around 1.2 seconds. Part (b) of the
figure shows the times for the remaining version on a scale where we can see them
better.

With improved sorting, we now find that list scanning becomes the bottleneck.
Thinking that the inefficiency is due to the recursive structure of the function, we
replaced it by an iterative one, shown as "Iter First." Surprisingly, the run time
increases to around 1.8 seconds. On closer study, we find a subtle difference

Fig
the

Section 5.15 Identifying and Eliminating Performance Bottlenecks 441

10 1

y
Hash

I I I Lower I

I a Sort ! '. list I

Initial Quicksort lter first lter last Big table Better hash Linear lower

(a) All versions.
2 1 I

' 1 Rest
B Hash
I Lower

Quicksort lter first lter last Big table Better hash Linear lower

(b) All but the slowest version.

List
sort -

ure 5.37 Profile resultsfor different version of word frequency counting program. Time is divided according to
different major operations in the program.

between the two list functions. The recursive version inserted new elements at
the end of the list, while the iterative one inserted them at the front. To maximize
performance, we want the most frequent words to occur near the beginnings of
the lists. That way, the function will quickly locate the common cases. Assuming
that words are spread uniformly throughout the document, we would expect the
first occurrence of a frequent one to come before that of a less frequent one.
By inserting new words at the end, the first function tended to order words in
descending order of frequency, while the second function tended to do just the
opposite. We therefore created a th'ud list scanning function that uses iteration,
but inserts new elements at the end of this list. With this version, shown as "Iter
Last," the time dropped to around 1.0 seconds, just slightly better than with the
recursive version.

Next, we consider the hash table structure. The initial version had only 1021
buckets (typically, the number of buckets is chosen to be a prime number to

442 Chapter 5 Optimizing Program Performance

enhance the ability of the hash function to distribute keys uniformly among the
buckets). For a table with 26,946 entries, this would imply an average load of
2694611007 = 26.4. That explains why so much of the time is spent performing
list operations-the searches involve testing a significant number of candidate
words. It also explains why the performance is so sensitive to the list ordering.
We then increased the number of buckets to 10,007, reducing the average load
to 2.70. Oddly enough. however, our overall run time incrcascd to 1.11 seconds.
The profile results indicate that this additional time was mostly spent with the
lower-case conversion routine, although this is highly unlikely. Our run times are
sufficiently short that we cannot expect very high accuracy with these timings.

We hypothesized that the poor performance with a larger table was duc to
a poor choice of hash function. Simply summing the character codes does not
produce a very wide range of values and does not differentiate according to the
ordering of the characters. For example, the words "god" and "dog" would hash
to location 147 f 157 f 144 = 448, since they contain the same characters. The
word "foe" would also hash to this location, since 146 + 157 + 145 = 448. We
switched to a hash function that uses shift and EXCLUSNE-OR operations. With
this version, shown as "Better Hash," the time drops to 0.84 seconds. A more
systematic approach would be to study the distribution of keys among the buckets
more carefully, making sure that it comes close to what one would expect if the
hash function had a uniform output distribution.

Finally, we have reduced the run time to the point where one half of the time
is spent performing lowercase conversion. We have already seen that function
lower1 has very poor performance, especially for long strings. The words in this
document are short enough to avoid the disastrous consequences of quadratic per-
formancc; thc longest word ("honorificabilitudinitatibus") is 27 characters long.
Still, switching to lower2, shown as "Linear Lower" yields a significant perfor-
mance, with the ovcrall time dropping to 0.52 seconds.

- - ~

With this exercise, we have shown that code profiling can help drop the time
required for a simple application from 9.11 seconds down to 0.52-a factor of
17.5 improvement. The profiler helps us focus our attention on the most time-
consuming parts of the program and also provides useful information about the
procedure call structure.

We can see that profiling is a useful tool to have in the toolbox, but it should not
be the only one. The timing measurements are imperfect, especially for shorter
(less than one second) run times. The results apply only to the particular data
tested. For example, if we had run the original function on data consisting of a
smaller number of longer strings, we would have found that the lowercase conver-
sion routine was the major performance bottleneck. Even worse, if it only profiled
documents with short words, we might never detect hidden performance killers
such as the quadratic performance of lowerl . In general, profiling can help us
optimize for typical cases, assuming we run the program on representative data,
but we should also make sure the program will have respectable performance for
all possible cases. This is mainly involves avoiding algorithms (such as insertion
sort) and bad programmingpractices (such as lower l) that yield poor asymptotic
performance.

Section 5.15 Identifying and Eliminating Performance Bottlenecks 443

5.15.3 Arndahl's Law

Gene Amdahl, one of the early pioneers in computing, made a simple, but in-
sightful observation about the effectiveness of improving the performance of one
part of a system. This observation has come to be known as Amdahl's law. The
main idea is that when we speed up one part of a system, the effect on the overall
system performance depends on both how significant this part was and how much
it sped up. Consider a system in which executing some application requires time
Told. Suppose some part of the system requires a fraction a of this time, and that
we improve its performance by a factor of k . That is, the component originally
required time aTold, and it now requires time (aTord)/k . The overall execution
time would thus be

From this, we can compute the speedup S = Told/ Tnew as

As an example, consider the case where a part of the system that initially
consumed 60% of the time (a = 0.6) is sped up by a factor of 3 (k = 3) . Then we
get a speedup of 1/[0.4 + 0.6/3] = 1.67. Thus, even though we made a substantial
improvement to a major part of the system, our net speedup was significantly less.
This is the major insight of Amdahl's law-to significantly speed up the entire
system, we must improve the speed of a very large fraction of the overall system.

Suppose you work as a truck driver, and you have been hired to carry a load of
potatoes from Boise, Idaho to Minneapolis, Minnesota, a total distance of 2500
kilometers. You estimate you can average 100 k~nlhr driving within the speed
limits, requuing a total of 25 hours for the trip.

A. You hear on the news that Montana has just abolished its speed limit, which
constitutes 1500 km of the trip. Your truck can travel at 150 kmlhr. What
will be your speedup for the trip?

B. You can buy anew turbocharger for your truck atwww. f asttrucks . corn.
They stock a variety of models, but the faster you want to go, the more it
WIU cost. How fast must you travel through Montana to get an overall
speedup for your trip of 5/3?

444 Chapter 5 Optimizing Program Performance

The marketing department at your company has promised your customers that
the next software release will show a 2X performance improvement. You have
been assigned the task of delivering on that promise. You have determined that
only 80% of the system can be improved. How much (i.e., what value of k)
would you need to improve this part to meet the overall performance target?

One interesting special case of Amdahl's law is toconsider the effect of setting
k to a. That is, we are able to take some part of the system and speed it up to
the point at which it takes a negligible amount of time. We then get

So, for example, if we can speed up 60% of the system to the point where it
requires close to no time, our net speedup will still only be 110.4 = 2.5. We saw
this performance with our dictionary program as we replaced insertion sort by
quicksort. The initialversion spent 7.8 of its 9.1 seconds performing insertion sort,
giving (Y = .86. With quicksort, the time spent sorting becomes negligible, giving a
predicted speedup of 7.1. In fact, the actual speedup was higher: 9.11J1.22 = 7.5,
due to inaccuracies in the profiling measurements for the initial version. We were
able to gain a large speedup because sorting constituted a very large fraction of
the overall execution time.

Amdahl's law describes a general principle for improving any process. In
addition to applying to speeding up computer systems, it can guide a company
trying to reduce the cost of manufacturing razor blades, or to a student trying to
improve his or her gradepoint average. Perhaps it is most meaningful in the world
of computers, where we routinely improve performance by factors of two or more.
Such high factors can only be obtained by optimizing a large part of the system.

5.16 Summary

Although most presentations on code optimization describe how compilers can
generate efficient code, much can be done by an application programmer to assist
the compiler in this task. No compiler can replace an inefficient algorithm or
data structure by a good oae, and so these aspects of program design should
remain a primary concern for programmers. We also have seen that optimization
blockers, such as memory aliasing and procedure calls, seriously restrict the ability
of compilers to perform extensive optimizations. Again, the programmer must
take primary responsibility for eliminating these.

Beyond this, we have studied a series of techniques, including loop unrolling,
iteration splitting, and pointer arithmetic. As we get deeper into the optimization,
it becomes important to study the generated assembly code, and to try to under-
stand how the computation is being performed by the machine. For execution
on a modern, out-of-order processor, much can be gained by analyzing how the

Chapter 5 Homework Problems 445

program would execute on a machine with unlimited processing resources, but
where the latencies and the issue times of the functional units match those of the
target processor. To refine this analysis, we should also consider such resource
constraints as the number and types of functional units.

Programs that involve conditional branches or complex interactions with the
memory system are more difficult to analyze and optimize than the simple loop
programs we first considered. The basic strategy is to try to make loops more
predictable and to try to reduce interactions between store and load operations.

When working with large programs, it becomes important to focus our op-
timization efforts on the parts that consume the most time. Code profilers and
related tools can help us systematically evaluate and improve program perfor-
mance. We described GPROF, a standard Unix profiling tool. More sophisticated
profilers are available, such as the VTUNE program development system from In-
tel. These tools can break down the execution time below the procedure level,
to measure performance of each basic block of the program. A basic block is a
sequence of instructions with no conditional operations.

Amdahl's law provides a simple but powerful insight into the performance
gains obtained by improving just one part of the system. The gain depends both
on how much we improve this part and how large a fraction of the overall time
this part originally required.

Bibliographic Notes

Many books have been written about compiler optimization techniques. Much-
nick's book is considered the most comprehensive 1551. Wadleigh and Crawford's
book on software optimization [85] covers some of the inaterialie have presented,
but it also describes the process of getting high performance on parallel machines.

Our presentation of the operation of an out-of-order processor is fairly brief
and abstract. More complete descriptions of the general principles can be found
in advanced computer architecture textbooks, such as the one by Hennessy and
Patterson [33, Ch. 31. Shriver and Smith give a detailed presentation of an AMD
processor [69] that bears many similarities to the one we have described.

Amdahl's law is presented in most books on computer architecture. With its
major focus on quantitative system evaluation, Hennessy and Patterson's book
[33] provides a particularly good treatment of the subject.

Homework Problems

5.11 **
Suppose we wish to write a procedure that computes the inner product of two
vectors. An abstract version of the function has a CPE of 54 for both integer and
floating-point data. By doing the same sort of transformations we did to transform

446 Chapter 5 Optimizing Program Performance

the abstract program combinel into the more efficient combine4, we get the
following code:

1 /t Accumulate i n temporary * /
2 void innerl(vecqtr u, vecqtr v, data-t *dest)

3
4 int i;
5 int length = vec-length(u);
6 data-t *udata = getyec-start(u);
7 data-t *vdata = get-vet-start(v);
8 data-t sum = (data-t) 0;
9

10 f o r (i = 0; i < length; i + + l {

11 sum = sum + udata[il vdata[il;
12)
13 *dest = sum;
14 1

Our measurements show that this function requires 3.11 cycles per iteration for
integer data. The assembly code for the inner loop is as follows:

udata i n Besi, v d a t a i n %ebx,

1 .L24:
2 movl (%esi,%edx,4),%eax

3 imull (%ebx, %edx, 4) , %eax
4 add1 %eax,%ecx
5 incl %edx
6 cmpl %edi,%edx
7 jl .L24

i in %edx, sum i n Becx, l e n g t h i n Bedi

l oop :

Get u d a t a j i l

Mu1 t i p l y by v d a t a [i l

Add t o sum
it+

Compare i : 1 e n g t h

If <, got0 loop

Assume that integer multiplication is performed by the general integer functional
unit and that this unit is pipeliied. This means that one cycle after a multiplica-
tion has started, a new integer operation (multiplication or otherwise) can begin.
Assume also that the IntegerIBranch function unit can perform simple integer
operations.

A. Show a translation of these lines of assenlbly code into a sequence of opera-
tions. The movl instruction translates into a single load operation. Register
Beax gets updated twice in the loop. Label the different versions Beax. la
and %eax. lb.

B. Explain how the function can go faster than the number of cycles required for
integer multiplication.

C. Explain what factor limits the performance of this code to at best a CPE of
2.5.

D. For floating-point data, we get a CPE of 3.5. Without needing to examine the
assembly code, describe a factor that will limit the performance to at best 3
cycles per iteration.

Chapter 5 Homework Problems 447

5.12 +
Write a version of the inner product procedure described in Problem 5.11 that
uses four-way loop unrolling.

Our measurements for this procedure give a CPE of 2.20 for integer data and
3.50 for floating point.

A. Explain why any version of any inner product procedure cannot achieve a
CPE greater than 2.

B. Explain why the performance for floating point did not improve with loop
unrolling.

5.13 +
Write a version of the inner product procedure described in Problem 5.11 that
uses four-way loop unrolling and two-way parallelism.

Our measurements for this procedure give a CPE of 2.25 for floating-point
data. Describe two factors that limit the performance to a CPE of at best 2.0.

5.14 ++
You've just joineda programming team that is trying to develop the world's fastest
factorial routine. Starting with recursive factorial, they've converted the code to
use iteration:

1 int fact(int n)
2 i
3 int i ;
4 int result = 1;
5

6 for (i = n; i > 0; i--)
7 result = result * i;
8 return result;
9 1

By doing so, they have reduced the numberof CPE for the function from 63 to 4,
measured on an Intel Pentium 111 (really!). Still, they would like to do better.

One of the programmers heard about loop unrolling, and she generated the
following code:

1 int fact-u2 (int n)
2 i
3 int i;
4 int result = 1;
5 for (i = n; i > 0; i-=2) i
6 result = (result * i) * (i-1) ;
7 1
8 return result;
9 1

Unfortunately, the team discovered that this code returns 0 for some values of
argument n.

448 Chapter 5 Optimizing Program Performance

A. For what values of n will f act-u2 and fact return different values?

B. Show how to fix f act_u2. Note that there is a special trick for this procedure
that involves just changing a loop bound.

C. Benchmarking f act-u2 shows no improvement in performance. How would
you explain that?

D. You modify the line inside the loop to read

6 result = result * (i * (i - 1));

To everyone's astonishment, the measured performance now has a CPE of
2.5. How do you explain this performance improvement?

5.15 +
Using the conditional move instruction, write assembly code for the body of the
following function:

1 / * Return maximum of x and y * /
2 int max(int x, int y)
3 (I
4 return (x < y) ? y : x;
5)

I
I

5.16 +*
Using conditional moves, the general technique for translating a statement of the
form

C1 & = c o n w p r ? then-expr : eb-expr;
i.

is to generate code of the form
*

J. 2.
pl = then2xpr; 3.. . $emp = else-expr;
test = cond-expr;
i,f (test) val = temp;

. .
wh$e the last lice is implemented with a conditional move instruction. Using the
e ~ & ~ l e of ~ract ice~roblem 5.7 as a guide, state the general requirements for this
t rg~jat ion to bk valid.

5.17 ++
The following function computes the sum of the elements in a linked list:

1 int list-sum(1istqtr 1s)
2 (
3 int sum = 0;
4
5 for (; Is; Is = Is->next)
6 sum += Is->data;
7 return sum;
8 1

Chapter 5 Homework Problems 449

The assembly code for the loop and the translation of the first iteration into oper-
ations yield the following:

A. Draw agraphshowingthe scheduling of operationsfor the first threeiterations
of the loop in the style of Figure 5.31. Recall that there is just one load unit.

Assembly Instructions
. L43 :
addl4(%edx),%eax

movl (%edx) , %edx
test1 %edx, %edx
jne .L43

B. Our measurements for this function give a CPE of 4.00. Is this consistent with
the graph you drew in part A?

Execution unit operations

movl4(%edx.O) + t.1
add1 t.l,%eax.O + %eax.l
load (%edx.O) + %edx.l
test1 %edx.l,%edx.l + cc.1
jne-taken cc.1

5.18 ++
'The following function is avariant on the list sum function shown in Problem5.17:

1 int list-sumZ(1istqtr 1s)
2 (
3 int sum = 0;
4 listqtr old;
5

6 while (Is) (
7 old = Is;
8 Is = Is->next;
9 sum t= old->data;
10 I
11 return sum;
12 1

This code is written in such a way that the memory access to fetch the next list
element comes before the one to retrieve the data field from the current element.

'The assembly code for the loop and the translation of the first iteration h t o
operations yield the following:

Assembly Instructions
. L48 :
movl %edx, %ecx
movl (%edx) , %edx
add1 4(%ecx),%eax

test1 %edx,%edx
jne .L48 -

Execution unit operations

load (%edx.O) + %edx.l
movl 4(%edx.O) + t.1
add1 t.l,%eax.O + %eax.l
test1 %edx.l,%edx.l + cc.1
jne-taken cc.1

450 Chapter 5 Optimizing Program Performance

Note that the register move operation movl %edx, %ecx does not require any
operations to implement. It is handled by simply associating the tag edx. 0 with
register %ecx, so that the later instruction add1 4 (%ecx) , %eax is translated to
use edx .0 as its source operand.

A. Draw agraphshowing theschedulingof operationsfor the firstthree iterations
of the loop, in the style of Figure 5.31. Recall that there is just one load unit.

B. Our measurements for this function give a CPE of 3.00. Is this consistent with
the graph you drew in part A?

C. How does this function make better use of the load unit than did the function
of Problem 5.17?

5.19
Suppose you are given the task of improving the performance of a program con-
sis;&g of 3 parts.-Part A requires 20% of the overall run time, part B requires
30%, and part C requires 50%. You determine that for $1000 you could either
speed up part B by a factor of 3.0 or part C by a factor of 1.5. Which choice would
maximize performance?

Solutions to Practice Problems

Problem 5.1 Solution [Pg. 3801
This problem illustrates some of the subtle effects of memory aliasing.

As the following commented code shows, the effect will be to set the value at
xp to zero:

This example illustrates that our intuition about program behavior can often be
wrong. We naturally think of the case where xp and y p are distinct but overlook
the possibility that they might be equal. Bugs often arise due to conditions the
programmer does not anticipate.

Problem 5.2 Solution [Pg. 3841
This problem illustrates the relationship between CPE and absolute performance.
It can be solved using elementary algebra. We find that for n 5 2, Version 1 is the
fastest. Version 2 is fastest for 3 5 n 5 7, and Version 3 is fastest for n 2 8.

Problem 5.3 Solution [Pg. 3911
This is a simple exercise, but it is important to recognize that the four statements
of a f o r loop-initial, test, update, and body-get executed different numbers of
times.

Code 1 min 1 max 1 i n c r 1 square

90 A. 1 1 91 1 90

Chapter 5 Solutions to Practice Problems 451

Problem 5.4 Solution [Pg. 4151
As we found in Chapter 3, reverse engineering from assembly code to C code
provides useful insights into the compilation process. The following code shows
the form for general data and general combining operation:

1 void combine5px8(vecgtr v, data-t *dest)

2 I
3 int length = vec-length(v);
4 int limit = length - 3;
5 data-t *data = get-vec-start(v);
6 data-t x = IDENT:
7 int i;
'a
9 ;* Combine 8 elements at a rime * /
10 for (i = 0; i < limit; i+=8) (
11 x = x OPER data[O]
12 OPER data [l]
13 OPER datal21
1 4 OPER data131
1 5 OPER data[4]
16 OPER data[5]
1 7 OPER data[6]
18 OPER data [7 1 ;
19 data += 8;
20 1
2 1
22 I* Flnish any remaining elements * I
2 3 for (; i < length; i++) I
24 x = x OPER datalo];
2 5 data++;
26 1
2 7 *dest = x;
28 I

Our handwritten pointer code is able to eliminate loop variable i by computing
an ending value for the pointer. This is another example of how a well-trained
human often can see transformations that are overlooked by the compiler.

Problem 5.5 Solution [Pg. 4211
Spilled values are generally stored in the local stack frame. Therefore, they have
a negative offset relative to %ebp. We can see such a reference at line 12 in the
assembly code.

A. Variable 1 i m i t has been spilled to the stack.

B. It is at offset -8 relative to %ebp.

C. This value is only required to determine whether the j 1 instruction closing
the loop should be taken. If the branch prediction logic predicts the branch
as taken, then the next iteration can proceed before the loop test has com-
pleted. Therefore, the comparison instruction is not part of the critical path
determining the loop performance. Furthermore, since this variable is not

452 Chapter 5 Optimizing Program Performance

altered within the loop, having it on the stack does not require any additional
store operations.

Problem 5.6 Solution [Pg. 4221
This problem demonstrates how small changes in a program can yield dramatic
perfimance differences, especially on a machine with out-of-order execution.
Figure 5.38 diagrams the scheduling of multiplication operations for one iteration
of the function for each of the associations. Each iteration involves three mul-
tiplications, and each takes the old value of r (shown as r . 0) and computes a
new value (show as r .I). As the solid blue l i e s show, however, the criticalpath,
that is, the minimum time between successive updates to r can be either 12 (Al),
8 (A2 and A5) or 4 (A3 and A4). Assuming the processor achieves maximum
parallelism, this critical path will provide the only limit on the theoretical CPE.

This yields the following table entries:

Figure 5.38 Scheduling of multiplication operations for cases in Problem 5.6. The blue lines show
the critical paths constraining the times between successive updates of variable r.

Chapter 5 Solutions to Practice Problems 453

We see from this table that associations Al, A2, and A5 achieve their theoretical
optimum, while A3 and A4 take 5 cycles per iteration rather than the theoretically
optimal 4.

Problem 5.7 Solution [Pg. 4281
This problem demonstrates the need to be careful when using conditional moves.
They require evaluating a value for the source operand, even when this value is
not used.

This code always dereferences xp (instruction B2). This will cause a null
pointer reference in the case where xp is zero.

Problem 5.8 Solution [Pg. 4361
This problem requires you to analyze the potential load-store interactions in a
program.

A. It will set each element a [i] to i + 1, for 0 5 i 5 998.
B. It will set each element a [i 1 to 0, for 1 5 i 5 999.
C. In the second case, the load of one iteration depends on the result of the store

from the previous iteration. n u s , there is a writelread dependency between
successive iterations.

D. It will give a CPE of 5.00, since there are no dependencies between stores and
subsequent loads.

Problem 5.9 Solution [Pg. 4431
This problem illustrates that Amdahl's law applies to more than just computer
systems.

A. In terms of Equation 5.1, we have u = 0.6 and k = 1.5. More directly,
traveling the 1500 kilometers through Montana will require 10 hours, and the
rest of the trip also requires 10 hours. This will give a speedup of 25/(10+10) =
1.25.

B. In terms of Equation 5.1, we have a = 0.6, and we require S = 513, from
which we can solve for k. More directly, to speedup the trip by 513, we must
decrease the overall time to 15 hours. The parts outside of Montana will still
require 10 hours, so we must drive through Montana in 5 hours. This requires
traveling at 300 km/hr, which is pretty fast for a truck!

Problem 5.10 Solution [Pg. 4441
Amdahl's Law is best understood by working through some examples. This one
requires you to look at Equation 5.1 from an unusual perspective.

This problem is a simple application of the equation. You are given S = 2
and a = .8, and you must then solve fork:

