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378 Chapter 5 Optimizing Program Performance 

Writing an efficient program requires two types of activities. First, we must select 
the best set of algorithms and data structures. Second, we must write source 
code that the compiler can effectively optimize to turn into efficient executable 
code. For this second part, it is important to understand the capabilities and 
limitations of optimizing compilers. Seemingly minor changes in how a program 
is written can make large differences in how well a compiler can optimize it. some 
programming languages are more easily optimized than others. Some features of 
C,such as the ability to perform pointer arithmeticand casting, makeit challenging 
to optimize. Programmers can often write their programs in ways that make it 
easier for compilers to generate efficient code. 

In approaching program development and optimization, we must consider 
how the code will be used and what critical factors affect it. In general, program- 
mers must make a trade-off between how easy a program is to implement and 
maintain, and how fast it will run. At an algorithmic level, a simple insertion sort 
can be programmed in a matter of minutes, whereas a highly efficient sort routine 
may take a day or more to implement and optimize. At the coding level, many 
low-level optimizations tend to reduce code readability and modularity, making 
the programs more susceptible to bugs and more difficult to modify or extend. 
For aprogram that will be run only once to generate a set of data points, it is more 
important to write it in a way that minimizes programming effort and ensures 
correctness. For code that will be executed repeatedly in a performance-critical 
environment, such as in a network router, much more extensive optimization 
usually is appropriate. 

In this chapter, we describe a number of techniques for improving code per- 
formance. Ideally, a compiler would be able to take whatever code we write and 
generate the most efficient possible machine-level program having the specified 
behavior. In reality, compilers can only perform limited transformations of the 
program, and they can be thwarted by optimization blockers-aspects of the pro- 
gram's behavior that depend strongly on the execution environment. Program- 
mers must assist the compiler by writing code that can be optimized readily. En the 
compiler literature, optimization techniques are classified as either "machine inde- 
pendent," which means they should be applied regardless of the characteristics of 
the computer that willexecute the code, or as "machine dependent," which means 
they depend on many low-level details of the machine. We organize our presen- 
tation along similar lines, starting with program transformations that should be 
standard practice when writing any program. We then progress to transformations 
whose efficacy depends on the characteristics of the target machine and compiler. 
These transformations also tend to reduce the modularity and readability of the 
code and thus should be applied when maximum performance is the dominant 
concern. 

To maximize the performance of a program, both the programmer and the 
compiler need to have a model of the target machine specifying how instructions 
are processed and the timing characteristics of the different operations. For ex- 
ample, the compiler must know timing information to be able to decide whether 
it should use a multiply instruction or some combination of shifts and adds. Mod- 
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em computers use sophisticated techniques to process a machine-level program, 
executing many instructions in parallel and possibly in a different order than they 
appear in the program. Programmers must understand how these processors work 
to be able to tune their programs for maximum speed. We present a high-level 
model of such a machine based on some recent models of Intel processors. We 
also devise a graphical notation that can be used to visualize the execution of 
instructions by the processor and to predict program performance. 

We conclude the chapter by discussing issues related to optimizing large pro- 
grams. We describe the use of codeprofilers-tools that measure the performance 
of different parts of a program. This analysis can help find inefficiencies in the 
code and identify the parts of the program we should focus on in our optimization 
efforts. Finally, we present an important observation, known as Amdahl's law, 
which quantifies the overall effect of optimizing some portion of a system. 

In this presentation, we make code optimization look like a simple linear 
process of applying a series of transformations to the code in a particular order. 
In fact, the task is not nearly so straightforward. A fair amount of trial-and- 
error experimentation is required. This is especially true as we approach the later 
optimization stages, where seemingly small changes can cause major changes in 
performance, while some very promising techniques prove ineffective. As we 
will see in the examples that follow, it can be difficult to explain exactly why a 
particular code sequence has aparticular execution time. Performance can depend 
on many detailed features of the processor design for which we have relatively 
little documentation or understanding. This is another reason to try a number of 
different variations and combinations of techniques. 

Studying the assembly code is one of the most effective means of gaining 
some understanding of the compiler and how the generated code will run. A good 
strategy is to start by looking carefully at the code for the inner loops. One can 
identify performance-reducing attributes, such as excessive memory references 
and poor use of registers. Starting with the assembly code, we can even predict 
what operations will be performed in parallel and how well they will use the 
processor resources. 

5.1 Capabilities and Limitations of Optimizing Compilers 

Modern compilers employ sophisticated algorithms to determine what values are 
computed in a program and how they are used. They can then exploit opportuni- - - 

ties to simplify expressions, to use a single computation in several different places, 
and to reduce the number of times a eiven com~utation must be performed. The u 

ability of compilers to optimize programs is limited by several factors, includ- 
ing: (1) the requirement that they should never alter correct program behavior, 
(2) theu limited understanding of the program's behavior and the environment in 
which it will be used, and (3) the need to perform compilation quickly. 

Compiler optimization is supposed to be invisible to the user. When a pro- 
; grammer compiles code with optimization enabled (e.g.. using the -0 command 

line option), the code should have identical behavior to when it is compiled 0th- i 



380 Chapter 5 Optimizing Program Performance 

erwise, except that it should run faster. This requirement restricts the ability of 
the compiler to perform some types of optimizations. 

Consider, for example, the following two procedures: 

1 void twiddlel(int *xp, int *yp) 
2 I 
3 *xp += *yp; 
4 *xp += *yp; 
5 1 
6 
7 void twiddle2(int *xp, int *yp) 
8 I 
9 * xp += 2 *  'yp; 

10  1 

At first glance, both procedures seem to have identical behavior. They both add 
twice the value stored at the location designated by pointer yp to that designated 
by pointer xp. On the other hand, function twiddle2 is more efficient. It 
requires only three memory references (read *xp, read *yp, write *xp), whereas 
twiddlel requires six (two reads of *xp, two reads of *yp, and two writes of 
*xp). Hence, if a compiler is given procedure twiddlel to compile, one might 
think it could generate more efficient code based on the computations performed 
by twiddle2. 

Consider however, the case in which xp and yp are equal. Then function 
twiddlel will perform the following computations: 

3 *xp += *xp; / +  Double value at xp * /  
4 *xp += *XP: / *  Double value at xp * /  

The result will be that the value at xp will be increased by a factor of 4. On the 
other hand, function twiddle2 will perform the following computation: 

*XP += 2* 'xp; / *  Triple value at xp * /  

The result will be that the value at xp will be increased by a factor of 3. The 
compiler knowsnothing about how twiddle1 willbe called, and so it must assume 
that arguments xp and yp can be equal. Therefore it cannot generate code in the 
style of twiddle2 as an optimized version of twiddlel. 

This phenomenon is known as memory aliasing. The compiler must assume 
that different pointers may designate a single place in memory. This leads to one 
of the major optimization blockers, aspects of programs that can severely limit 
the opportunities for a compiler to generate optimized code. 

The following problem illustrates the way memory aliasing can cause unex- 
pected program behavior. Consider the following procedure to swap two val- 
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1 / *  Swap value x a t  xp with value y a t  yp + /  
2 void swap(int *xp, int *yp) 
3 I 
4 * xp = *xp t *yp; / *  x.y * /  
5 typ = 'xp - * yp; / '  xty-y = x '/ 
6 *xp = *xp - yp; / *  xty-x = y * /  

7 1 

If this procedure is called with xp equal to yp, what effect will it have? 

A second optimization blocker is due to function calls. As an example, con- 
sider the following two procedures: 

1 int f (int); 
2 
3 int funcl(x) 
4 { 
5 return f (x) t f (XI + f (x) + f (x); 
6 1 
7 

8 int func2(x) 
9 ( 
10 return 4*f(x); 
il ) 

It might seem at first that both compute the same result, but with f u n d  calling 
f  only once, whereas f u n c l  calls it four times It is tempting to generate code in 
the style of func2 when given f u n c l  as the source. 

Consider, however, the following code for f :  

1 int counter = 0; 
2 

3 int f (int x) 
4 I 
5 return countertt; 
6 1 

'his function has a side effect-it modifies some part of the global program state. 
Changing the number of times it gets called changes the program behavior. In 
particular, a call to f u n c l  would return O +  1 +2+3 = 6 ,  whereas a call to f  unc2 
would return 4 . 0  = 0, assuming both started with global variable c o u n t e r  set 
to 0. 

Most compilers do not try to determine whether a function is free of side 
effects and hence is a candidate for optimizations such as those attempted in 
func2. Instead, the compiler assumes the worst case and leaves all function calls 
intact. 

Among compilers, the GNU compiler ccc is considered adequate, but not 
exceptional, in terms of its optimization capabilities. It performs basic optimiza- 
tions, but it does not perform the radical transformations on programs that more 
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"aggressive" compilers do. As a consequence, programmers using GCC must put 
more effort into writing programs in a way that simplifies the compiler's task of 
generating efficient code. 

5.2 Expressing Program Performance 

We need a way to express program performance that can guide us in improving 
the code. A useful measure for many programs is cycles per element (CPE). 
This measure helps us understand the loop performance of an iterative program 
at a detailed level. Such a measure is appropriate for programs that perform a 
repetitive computation, such as processing the pixels in an image or computing 
the elements in a matrix product. 

The sequencing of activities by a processor is controlled by a clock providing a 
regular signal of some frequency, expressed in either megahertz (MHz), millions of 
cycles per second, or gigahertz (GHz)? billions of cycles per second. For example, 
when product literature characterizes a system as a "1.4-GHz" processor, it means 
that the processor clock runs at 1400 megahertz. The time required for each 
clock cycle is given by the reciprocal of the clock frequency. These typically are 
expressed in nanoseconds, (i.e., billionths of a second). A 2-GHz clock has a 0.5- 
nanosecond period, while a 500-MHz clock has a period of 2 nanoseconds. From a 
programmer's perspective, it is more instructive to express measurements in clock 
cycles rather than nanoseconds. That way, the measurements are less dependent 
on the particular model of processor being evaluated, and they help us understand 
exactly how the program is being executed by the machine. 

Many procedures contain a loop that iterates over a set of elements. For 
example, functions v s u m l  and vsum2 inFigure 5.1 both compute the sum of two 
vectors of length n .  The first computes one element of the destination vector per 
iteration. The second uses a technique known as loop unrolling to compute two 
elements per iteration. This version will only work properly for even values of 
n. Later in this chapter we cover loop unrolling in more detail, including how to 
make it work for arbitrary values of n .  

The time required by such a procedure can be characterized as a constant plus 
a factor proportional to the number of elements processed. For example, Figure 
5.2 shows a plot of the number of clock cycles required by the two functions for 
a range of values of n.  Using a least squaresfit, we find that the two function run 
times (in clock cycles) can be approximated by lines with equations 80 + 4.0n and 
83.5 +3.5n, respectively. These equations indicated an overhead of 80 to 84 cycles 
to initiate the procedure, set up the loop, and complete the procedure, plus a linear 
factor of 3.5 or 4.0 cycles per element. For large values of n (say, greater than 50), 
the run times will be dominated by the linear factors. We refer to the coefficients 
in these terms as the effective number of cyclesper element, abbreviated "CPE." 
Note that we prefer measuring the number of cycles per element rather than the 
number of cycles per ireration, because techniques such as loop unrolling allow us 
to use fewer iterations to complete the computation, but our ultimate concern is 
how fast the procedure will run for a given vector length. We focus our efforts on 
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coddopt/vsurn.c 
1 void vswnl ( i n t  n )  
2 { 
3 i n t  i ;  
4 

5 fo r  ( i  = 0 ;  i < n; i++) 
6 c [ i ]  = a [ i l  + b [ i ] ;  
7 1 
8 

9 I*  Sum vector of n elements (n must be even) * I  
1 0  void vsumZ(int n)  
11 ( 

1 2  i n t  i; 
13 

14  fo r  (i = 0;  i < n; i + = 2 )  { 

15 I*  Compute two elements per iteration ' 1  
1 6  c [ i l  = a [ i ]  + b [ i l ;  
1 7  c [ i + l ]  = a [ i + l ]  + b [ i + l ] ;  
18  1 
19 1 

Figure 5.1 Vector sum functions. These provide examples for how we expressprogram 
performance. 

0 1 I I I 

0 50 1 00 150 200 
Elements 

Figure 5.2 Performance of vector sum functions. The slope of the lines indicates 
the number of clock cycles per element (CPE): 
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minimizing the CPE for our computations. By this measure, vsum2, with a CPE 
of 3.50, is superior to vsuml, with a CPE of 4.0. 

Aside: What is  a least squares fit? 

For a set of data points ( x l ,  yl), . . . (x,,  y,), we often try to draw a line that best approximates theX-Y 
trend represented by this data. With a least squares fit, we look for a line of the form y = m x  + b that 
minimizes the following error measure: 

An algorithm for computing m and b can be derived by finding the derivatives of E(m,  b) with respect 
to rn and b and setting them to 0. 

Later in this chapter we will take a single function and generate many different 
variants that preserve the function's behavior, but with different performance 
characteristics. For three of these variants, we found that the run times (in clock / cycles) can be approximated by the following functions: 

Version 1 60 + 35n. 
Version 2 136 + 4n. 
Version 3 157 + 1.25. 

For what values of n would each version be the fastest of the three? Re- 
member that n will always be an integer. 

5.3 Program Example 

To demonstrate how an abstract program can be systematically transformed into 
more efficient code, consider the simple vector data structure, shown in Figure 5.3. 
A vector is represented with two blocks of memory. The header is a structure 
declared as follows: 

codefopt/vec. h 

1 / +  Create abstract data type for vector '/ 
2 typedef s t r u c t  I 
3 i n t  len ;  
4 data-t *data;  
5 ) vec-rec, * v e c q t r ;  

coddopdvec. h 

The declaration uses data type data-t to designate the data type of the underlying 
elements. In our evaluation, we measure the performance of our code for data 
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Figure 5.3 
length ELI0,',*, length-1 

Vector abstract data . . . 
type. A vector is 
represented by header 
information plus array of 
designated length. 

types int, float, anddouble. We do thisby compiling and running the program 
separately for different type declarations, as in the following example: 

typedef int data-t; 

In addition to the header, we allocate an array of len objects of type data-t to 
hold the actual vector elements. 

Figure 5.4 shows some basic procedures for generating vecton, accessing vec- 
tor elements, and determining the length of a vector. An important feature to note 
is that get-vec-element, the vector access routine, performs bounds checking 
for every vector reference. This code is similar to the array representations used 
in many other languages, including Java. Bounds checking reduces the chances 
of program error, but, as we will see, it also significantly affects program perfor- 
mance. 

As an optimization example, consider the code shown in Figure 5.5, which 
combines all of the elements in a vector into a single value according to some 
operation. By using different definitions of compile-time constants IDENT and 
OPER, the code can be recompiled to perform different operations on the data. In 
particular, using the declarations 

#define IDm 0 
#define OPER t 

it sums the elements of the vector. Using the declarations 

#define IDENT 1 
#define OPER * 

it computes the product of the vector elements. 
As astarting point, here are the CPE measurementsfor combinel running on 

an 1 n t e l ~ e n t i G  III, trying all combinations of data type and combining operation. 
In ourmeasurements, we found that the timings were generally equal for single and 
double-precision floating point data. We therefore show only the measurements 
for single precision. 

Function 1 page I Integer I Floating point 
t * I + * 

combinel 
cornbinel 

387 
387 

41.44 160.00 
31.25 143.00 

I 

Abstract unoptimized 
Abstract -02 

42.06 41.86 
31.25 33.25 
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1 / *  Create vector of specified length * /  
vecgtr new-vec(int len) 
{ 

/ +  allocate header structure * /  
vecqtr result = (vecgtr) malloc(sizeof(vec-rec)); 
if (!result) 

return NULL; / *  Couldn't allocate storage * /  
result->len = len; 
/ *  Allocate array * /  
if (len > 0) { 

data-t *data = (data-t *)calloc(len, sizeoE(data-t)); 
if (!data) { 

free((void * )  result); 
return NULL; / *  Couldn't allocate storage * /  

I 

result->data = data; 
I 
else 

result->data = NULL; 
return result; 

1 

' * 
* Retrieve vector element and store at dest. 
* Return 0 (out of bounds) or 1 [successful) 
' 1  
int get-vec-element(vecqtr v, int index, data-t *dest) 
t 

if (index < 0 ( ( index >= v->len) 
return 0; 

*dest = v->data[indexl; 
return 1; 

I 

I +  Return length of vector ' 1  

int vec-length(vecgtr v) 
1 

return v->len: 
1 

Figure 5.4 Implementation of vector abstract data type. In the actual program, data 
type data-t is declared to be int, float, or double. 
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- codeloptlcombine.~ 
1 I *  Ir,plementation with maximum use of data abstract ion + /  
2 void combinel(vecqtr  v,  data-t *dest)  
3 [ 
4 i n t  i ;  
5 
6 *dest = IDENT; 
7 f o r  (i = 0; i < vec-length(v); i+t) { 

8 data-t val ;  
9 get-vec-element (v ,  i , &val ) ; 
1 0  *dest = *dest OPER va l ;  
11 } 

Figure 5.5 Initial implementation of combining operation. Using different declarations 
of identity element IDENT and combining operation OPER, we can measure the routine for 
different operations. 

By default, the compiler generates code suitable for stepping with a symbolic 
debugger. Very little optinuzation is performed since the intention is to make 
the object code closely match the computations indicated in the source code. By 
simply setting the command line switch to '-02' we enable optimizations. As 
can be seen, this sipficantly improves the program performance. In general, it is 
good to get into the habit of enabling this level of optimization, unless the program 

I is being compiled with the intention of debugging it. For the remainder of our 
measurements, we enable this level of compiler optimization. 

L 
Note also that the times are fairly comparable for the different data types and 

E the different operations, with the exception of floating-point multiplication. These 
1 very high cycle counts for multiplication are due to an anomaly in our benchmark 
1 data. Identifying such anomalies is an important component of performance anal- 

ysis and optimization. We return to this issue in Section 5.11.1. We will see that 
we can improve on this performance considerably. 

5.4 Eliminating Loop lnefficiencies 

Observe that procedure combinel, as shown in Figure 5.5, calls function 
vec-length as the test condition of the f o r  loop. Recall from our discussion 
of loops that the test condition must be evaluated on every iteration of the loop. 
On the other hand, the length of the vector does not change as the loop proceeds. 
We could therefore compute the vector length only once and use this value in our 
test condition. 

Figure 5.6 shows a modified version called combine2, which calls 
vec-length at the beginning and assigns the result to a local variable length.  
This local variable is then used in the test condition of the for loop. Surprisingly, 
this small change significantly affects program performance. As the following ta- 
ble shows, we eliminate approximately 10 clock cycles for each vector element 
with this simple transformation: 
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1 I* Move call to vec-lengch out of loop * /  

2 void combine2(vecqtr v, data-t *dest) 
3 I 
4 int i; 
5 int length = vec-iength(v); 
6 

7 *dest = IDENT; 
8 f o r  (i = 0; i < length; it+) { 

9 data-t val; 
10 get-vec-element(v, i, &val); 
11 *dest = *dest OPER val; 
12 } 

1 3  1 

Figure 5.6 Improving the efficiency of the loop test. By moving the call to vec-length 
out of the loop test, we eliminate the need to execute it on every iteration. 

This optimization is an instance of a general class of optimizations known as 
code motion. They involve identifying a computation that is performed multiple 
times, (e.g., within a loop), but such that the result of the computation will not 
change. We can therefore move the computation to an earlier section of the code 
that doesnotget evaluated as often. Inthiscase, wemoved thecall tovec-length 
from within the loop to just before the loop. 

Optimizing compilers attempt to perform code motion. Unfortunately, as dis- 
cussed previously, they are typically very cautious about making transformations 
that change where or how many times a procedure is called. They cannot reliably 
detect whether or not a function will have side effects, and so they assume that it 
might. For example, if vec-length had some side effect, then combine1 and 
combine2 could have different behaviors. Incases such as these, the programmer 
must help the compiler by explicitly performing the code motion. 

As an extreme example of the loop inefficiency seen in combinel, consider 
the procedure lowerl shown in Figure 5.7. This procedure is styled after rou- 
tines submitted by several students as part of a network programming project. Its 
purpose is to convert all of the uppercase letters in a string to lower case. The pro- 
cedure steps through the string, converting each uppercase character to lower case. 

The library procedure strlen is called as part of the loop test of lowerl. A 
simple version of strlen is also shown in Figure 5.7. Since strings in C are null- 
terminated character sequences, s trlen must step through the sequence until it 
hits a null character. For a string of length n ,  strlen takes time proportional to 

Function Method Page Integer ( Floating point 
+ * I + * 
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code/opt/lower.c 
1 I *  Convert string to lower case: slow * /  

2 void lowerl(char *s )  
3 ( 
4 int i; 
5 
6 for (i = 0; i < strlen(s); i++) 
7 if (s[il >= 'A' && s[i] <= '2') 
8 s[il -= ('A' - 'a'); 
9 } 
10 
11 I* Convert string to lower case: faster * /  
12 void lower2 (char *s) 
13 ( 
14 int i; 
15 int len = strlen(s); 
16 
17 for (i = 0; i < len; i++) 
18 if (s[il >= 'A' && s[i] <= '2') 
19 s[i] -= ('A' - 'a'); 
20 } 
2 1 
22 / *  ~mplementation of library function strlen .I 
23 I* Compute length of string * I  
2 4  size-t strlen(const char *s) 
25 ( 
2 6 int length = 0; 
21 while (*s ! =  '\0') ( 

2 8 s++; 
2 9  length++; 
30 1 
31 return length; 
32 } 

code/opt/[ower.c 

Figure 5.7 Lower-case conversion routines. The two procedures have radically different 
performance. 

n.  Since strlen is called on each of the n iterations of lowerl, the overall run 
time of lowerl is quadratic in the string length. 

This analysis is confirmed by actual measurements of the procedure for dif- 
ferent length strings, as shown Figure 5.8. The graph of the run time for lowerl 
rises steeply as the string length increases. The lower part of the figure shows the 
run times for eight different lengths (not the same as shown in the graph), each 
of which is a power of 2. Observe that for lowerl each doubling of the string 
length causes a quadrupling of the run time. This is a clear indicator of quadratic 
complexity. For a string of length 262,144, lowerl requires a full 3.1 minutes of 
CPU time. 

Function lower2 shown in Figure 5.7 is identical to that of lowerl, ex- 
cept that we have moved the call to strlen out of the loop. The performance 
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0 50,000 100,000 150,000 200,000 250,000 
String length 

1 Function 1 Strine leneth 

Figure 5.8 Comparative performance of lower-case conversion routines. The original code lowerl has quadratic 
asymptotic complexity due to an inefficient loop structure. The modified code lower2 has linear complexity. 

improves dramatically. For a string length of 262,144, the function requires just 
0.006 seconds-over 30,000 times faster than lowerl. Eachdoublmg of the string 
length causes a doubling of the run time-a clear indicator of linear complexity. 
For longer strings, the run time improvement will be even greater. 

In an ideal world, a compiler would recognize that each call to strlen in 
the loop test will return the same result, and thus the call could be moved out of 
the loop. This would require a very sophisticated analysis, since strlen checks 
the elements of the string and these values are changing as lowerl proceeds. 
The compiler would need to detect that even though the characters within the 
string are changing, none are being set from nonzero to zero, or vice versa. Such 
an analysis is well beyond the ability of even the most aggressive compilers, so 
programmers must do such transformations themselves. 

This example illustrates a common problem in writing programs, in which a 
seemingly trivial piece of code has a hidden asymptotic inefficiency. One would 
not expect a lowercase conversion routine to be alimiting factor in a program's 
performance. Typically, programs are tested and analyzed on small data sets, for 
which the performance of lowerl is adequate. When the program is ultimately 
deployed, however, it is entirely possible that the procedure could be applied to a 
string of one million characters, for which lowerl would over require nearly one 
hour of CPU time. All of a sudden this benign piece of code has become a major 
performance bottleneck. By contrast, lower2 would complete in well under a 
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second. Stories abound of major programming projects in which problems of this 
sort occur. Part of the job of a competent programmer is to avoid ever introducing 
such asymptotic inefficiency. 

1 Consider the following functions: 

int min(int x, int y) { return x < y ? x : y; ) 
int max(int x, int y) ( return x < y ? y : x; ) 
void incr(int *xp, int v) { *xp += v; ) 
int square(int x) { return x*x; 1 

1 The following three code fragments call these functions: 

A. for (i = min(x, y); i < max(x, y); incr(&i, 1)) 
t += square(i); 

B. for (i = max(x, y) - 1; i >= min(x, y); incr(&i, -1)) 
t += square(i1 ; 

c. int low = min(x, y) ; 
int high = max(x, y); 

for (i = low; i < high; incr(&i, 1) ) 
t += square(i) ; 

Assume x equals 10 and y equals 100. Fill in the following table indicating 
the number of times each of the four functions is called in code fragments A-C. 

I Code 1 min max incr square 

5.5 Reducing Procedure Calls 

As we have seen, procedure calls incur substantial overhead and block most forms 
of program optimization. We can see in the code for combine2 (Figure 5.6) that 
get-vec-element is called on every loop iteration to retrieve the next vector 
element. ?his procedure is especially costly since it performs bounds checking. 
Bounds checking might be a useful feature when dealing with arbitrary array 
accesses, but a simple analysis of the code for combine2 shows that all references 
will be valid. 

Suppose instead thatwe add a function get-vec-start to our abstract data 
type. ?his function returns the starting address of the data array, as shown in 
Figure 5.9. We could then write the procedure shown as combine3 in this figure, 

b 
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1 data-t *get-vec-start (vecqtr V) 

2 ( 
3 return v->data; 

4 1 

1 I *  Direct access to vector data * I  
2 void combine3 (vecqtr v, data-t *dest) 
3 
4 int i; 
5 int length = vec-length(v): 
6 data-t *data = get-vec-start(v); 
7 

8 *dest = IDENT; 
9 for (i = 0; i < length; i++) { 

10 *dest = *dest OPER data[il: 
11 1 
1 2  ) 

Figure 5.9 Eliminating function calls within the loop. The resulting code runs much 
faster, at some cost in program modularity. 

having no function calls in the inner loop. Rather than making a function call to 
retrieve each vector element, it accesses the array directly. A purist might say that 
this transformation seriously impairs the program modularity. In principle, the 
user of the vector abstract data type should not even need to know that the vector 
contents are stored as an array, rather than as some other data structure such as 
a linked list. A more pragmatic programmer would argue the advantage of this 
transformation on the basis of the following experimental results: 

Function I Paee 1 Method Inteeer I Floatine ~ o i n t  I 

( combine3 1 392 ( Direct data access 1-1 

There is an improvement of up to a factor of 3.5X. For applications in which 
performance is a significant issue, one often must compromise modularity and 
abstraction for speed. It is wise to include documentation on the transformations 
applied, as well as the assumptions that led to them, in case the code needs to be 
modiied later. 
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Aside: Expressing relative performance. 

'The best way to express a performance improvement is as a ratio of the form Told/Tnew, where Told is the 
time required for the original version and Tnew is the time required by the modified version. This will be a 
number greater than 1.0 if any real improvement occurred. We use the suffix 'X' to indicate such a ratio, 
where the factor "3.5X" is expressed verbally as "3.5 times." 

'The more traditional way of expressing relative change as a percentage works well when the change 
is small, but its definition is ambiguous. Should it be 100. (Told - Tnew)/Tnew or possibly 100. (Told - 
TWw)/Told, or something else? In addition, it is less instructive for large changes. Saying that "performance 
improved by 250%" is more difficult to comprehend than simply saying that the performance improved 
by a factor of 3.5. 

5.6 Eliminating Unneeded Memory References 

The code for combine3 accumulates the value being computed by the combining 
operation at the location designated by pointer des t .  This attribute can be seen 
by examining the assembly code generated for the compiled loop, with integers as 
the data type and multiplication as the combining operation. In this code, register 
%ecx points to data,  %edx contains the value of i, and %edi  points to des t .  

combine3: tjpe=INT, OPER = * 
dest  i n  Bedi, data i n  Becx, i i n  Be&, length  i n  8esi  

1 .LIE: loop: 
2 movl (%edi),%eax Read 'des t  

3 imull (%ecx,%edx,4),%eax Multiply by data i i l  

4 movl %eax, (%edi) W r i  t e 'des  t 

5 incl %edx it+ 
6 cmpl %esi,%edx Compare i : length  

7 jl .LIE ~f <, goto loop 

Instruction 2 reads the value stored at d e s t  and instruction 4 writes back to this 
location. This seems wasteful, since the value read by instruction 2 on the next 
iteration normally will be the value that has just been written. 

This leads to the optimization shown as combine4 in Figure 5.10, where we 
introduce a temporary variable x that is used in the loop to accumulate the com- 
puted value. The result is stored at *des t only after the loop has been completed. 
As the assembly code that follows shows, the compiler can now use register Beax 
to hold the accumulated value. Compared to the loop for combine3, we have 
reduced the memory operations per iteration from two reads and one write to just 
a single read. Registers %ecx and Bedx are used as before, but there is no need 
to reference *dest.  

combinel: type=INT, OPER = * 
d a t a  i n  Beax, x i n  Becx, i i n  Be&, length  i n  8esi  

I .L24: loop: 
2 imull (%eax,%edx,4),%ecx ~ u l  t i p l y  x by data i i i  

3 incl %edx i++ 

4 cmpl %esi,%edx compare i : length  

5 jl .L24 rf <, goto loop 
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1 I* Accumulate result in local variable ' I  
2 void combine4(vecqtr v, data-t *dest) 

3 I 
4 int i ;  
5 int length = vec-length (v) ; 
6 data-t *data = get-vec-start(v); 
7 data-t x = IDENT; 
B 

9 *dest = IDENT; 
10 for (i = 0; i < length; it+) { 
11 x = x OPER data[il; 
12 } 

13 'dest = x; 
14 } 

Figure 5.10 Accumulating result in temporary. This eliminates the need to read and write 
intermediate values on every loop iteration. 

We see a significant improvement in program performance, as shown in the fol- 
lowing table: 

I I 

combine3 1 392 1 Direct data access 
I 

6.00 9.00 8.00 117.00 1 combine4 1 394 Accumulate in temmrarv 1 2.00 4.00 3.00 5.00 

The most dramatic decline is in the time for floating-point multiplication. Its 
time becomes comparable to the times for the other combinations of data type and 
operation. We will examine the cause for this sudden decrease in Section 5.11.1. 

Again, one might think that a compiler should be able to automatically trans- 
form the combine3 code shown in Figure 5.9 to accumulate the value in a register, 
as it does with the code for combine4 shown in Figure 5.10. 

In fact, however, the two functions can have different behavior due to  memory 
aliasing. Consider, for example, the case of integer data with multiplication as the 
operation and 1 as the identity element. Let v be a vector consisting of the three 
elements [2,3,5] and consider the following two function calls: 

That is, we create an alias between the last element of thevector and the destination 
for storing the result. The two functions would then execute as follows: 

I Function Initial Before  loo^ i = 0 1 i = 1 1 i = 2 1 Final 1 
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As shown previously, combine3 accumulates its result at the destination, 
which in this case is the final vector element. This value is therefore set first to 
1, then to 2 .  1 = 2, and then to 3 . 2  = 6. On the final iteration, this value is 
then multiplied by itself to yield a final value of 36. For the case of combined, 
the vector remains unchanged until the end, when the final element is set to the 
computed result 1 . 2 . 3  . 5  = 30. 

Of course, our example showing the distinction between combine3 and corn- 
bine4 is highly contrived. One could argue that the behavior of combine4 more 
closely matches the intention of the function description. Unfortunately, an op- 
timizing compiler cannot make a judgement about the conditions under which a 
function might be used and what the programmer's intentions might be. Instead, 
when given combine3 to compile, it is obligated to preserve its exact functionality, 
even if this means generating inefficient code. 

5.7 Understanding Modern Processors 

Up to this point, we have applied optimizations that did not rely on any features 
of the target machine. They simply reduced the overhead of procedure calls and 
eliminated some of the critical "optimization blockers" that cause difficulties for 
optimizing compilers. As we seek to push the performance further, we must begin 
to consider optimizations that make more use of the means by which processors 
execute instructions and the capabilities of particular processors. Getting every 
last bit of performance requires a detailed analysis of the program, as well as code 
generation tuned for the target processor. Nonetheless, we can apply some basic 
optimizations that will yield an overall performance improvement on a large class 
of processors. The detailed performance results we report here may not hold for 
other machines, but the general principles of operation and optimization apply to 
a wide variety of machines. 

To understand ways to improve performance, we require a simple operational 
model of how modern processors work. Due to the large number of transistors 
that can be integrated onto a single chip, modern microprocessors employ com- 
plex hardware that attempts to maximize program One result is that 
their actual operation is far different from the view that is perceived by looking at 
assembly-language programs. At the assembly-code level, it appears as if instruc- 
tions are executed one at a time, where each instruction involves fetching values 
from registers or memory, performing an operation, and storing results back to a 
register or memory location. In the actual processor, a number of instructions are 
evaluated simultaneously. In some designs, there can be 80 or more instructions 
"in flight." Elaborate mechanisms are employed to make sure the behavior of this 
parallel execution exactly captures the sequential semantic model required by the 
machine-level program. 

5.7.1 Overall Operation ,. .. 
- 

Figure 5.11 shows a very simplified view of a modern microprocessor. Our hy- .. . .  . 
pothetical processor design is based loosely on the Intel "P6" microarchitecture. 
[30], the basis for the Intel PentiumPro, Pentium I1 and Pentium 111 processors. . ~ .  
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Figure 5.11 
Block diagram of a 
modern processor. 
The Instruction control 
unit is responsible for 
reading instructions from 
memory and generating 
a sequence of primitive 
operations. The Execution 
unit then performs the 
operations and indicates 
whether the branches 
were correctly predicted. 
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The newer Pentium 4 has a different microarchitecture, but it has a similar over- 
all structure to the one we present here. The P6 microarchitecture typifies the 
high-end processors produced by a number of manufacturers since the late 1990s. 
It is described in the industry as being superscalar, which means it can perform 
multiple operations on every clock cycle, and out-of-order, meaning that the order 
in which instructions execute need not correspond to their ordering in the assem- 
bly program. T%e overall design has two main parts: the Instruction control unit 
(ICU), which is responsible for reading a sequence of instructions from memory 
and generating from these a set of primitive operations to perform on program 
data, and the Execution unit (EU), which executes these operations. 

The ICU reads the instructions from an instruction cache-a special, high- 
speed memory containing the most recently accessed instructions. In general, 
the ICU fetches well ahead of the currently executing instructions, so that it has 
enough time to decode these and send operations down to the EU. One problem, 
however, is that when a program hits a branch,'there are two possible directions 
the program might go. The branch can be taken, with control passing to the 

Address 
-r 

. Instructions 

' We use the term "branch" specifically to refer to conditional jumpinstructions. Other instructions 
that can transfer control to multiple destinations, such as procedure return and indirect jump$ 
provide similar challenges for the processor. 
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branch target. Alternatively, the branch can be not taken, with control passing 
to the next instruction in the instruction sequence. Modern processors employ 
a technique known as branch prediction, in which they guess whether or not a 
branch will be taken and also predict the target address for the branch. Using 
a technique known as speculative execution, the processor begins fetching and 
decoding instructions at where it predicts the branch will go, and even begins 
executing these operations before it has been determined whether or not the 
branch prediction was correct. If it later determines that the branch was predicted 
incorrectly, it resets the state to that at the branch point and begins fetching and 
executing instructions in the other direction. A more exotic technique would 
be to begin fetching and executing instructions for both possible directions, later 
discarding the results for the incorrect direction. To date, this approach has not 
been considered cost effective. The block labeled Fetch Control incorporates 
branch prediction to perform the task of determining which instructions to fetch. 

The Instruction Decoding logic takes the actual program instructions and 
converts them into a set of primitive operations. Each of these operations performs 
some simple computational task such as adding two numbers, reading data from 
memory, or writing data to memory. For machines with complex instructions, such 
as an IA32 processor, an instruction can be decoded into a variable number of 
operations. Thedetails vary from one processor design to another, but we attempt 
to describe a typical implementation. In this machine, decoding the instruction 

yields a single addition operation, whereas decoding the instruction 

yields three operation--one to load a value from memory into the processor, 
one to add the loaded value to the value in register %eax, and one to store the 
result back to memory. This decoding splits instructions to allow a division of 
labor among a set of dedicated hardware units. These units can then execute 
the different parts of multiple instructions in parallel. For machines with simple 
instructions, the operations correspond more closely to the original instructions. 

The EU receives operations from the instruction fetch unit. Typically, it can 
receive a number of them on each clock cycle. These operations are dispatched 
to a set of functional units that perform the actual operations. These functional 
units are specialized to handle specific types of operations. Our figure illustrates 
a typical set of functional units. It is styled after those found in recent Intel 
processors. The units in the figure are as follows: 

IntegerIBranch: Performs simple integer operations (add, test, compare, logi- 
cal). Also processes branches, as is discussed below. 

GeneralInteger: Can handle allinteger operations, including multiplication and 
division. 

Floating-Point Add: Handles simple floating-point operations (addition, format 
conversion). 
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Floating-Point Multiplication/Division: Handles floating-point multiplication 
and division. More complex floating-point instructions, such transcendental 
functions, are converted into sequences of operations. 

Load: Handles operations that read data from the memory into the processor. 
The functional unit has an adder to perform address computations. 

Store: Handles operations that write data from the processor to the memory. 
The functional unit has an adder to perform address computations. 

As shown in the figure, the load and store units access memory via a data cache, 
a high-speed memory containing the most recently accessed data values. 

With speculative execution, the operations are evaluated, but the final results 
are not stored in the program registers or data memory until the processor can 
be certain that these instructions should actually have been executed. Branch 
operations are sent to the EU, not to determine where the branch should go, but 
rather to determine whether or not they were predicted correctly. If the prediction 
was incorrect, the EU will discard the results that have been computed beyond 
the branch point. It will also signal to the Branch Unit that the prediction was 
incorrect and indicate the correct branch destination. In this case, the Branch 
Unit begins fetching at the new location. Such a misprediction incurs a significant 
cost in performance. It takes a while before the new instructions can be fetched, 
decoded, and sent to the execution units. We explore this further in Section 5.12. 

Within the ICU, the Retirement Unit keeps track of the ongoing processing and 
makes sure that it obeys the sequential semantics of the machine-level *robam. 
Our figure shows a Register File containing the integer and floating-point registers 
as part of the Retirement Unit, because this unit controls the updating of these 
registers. As an instruction is decoded, information about it is placed in a first-in, 
first-out queue. This information remains in the queue until one of two outcomes 
occurs. First, once the operations for the instruction have completed and any 
branch points leading to this instruction are confirmed as havingbeen correctl; 
predicted, the instruction can be retired, with any updates to the program registers 
being made. If some branch point leading to thisinstruction was mispredicted, 
on the other hand, the instruction will beflushed, discarding any results that may 
have been computed. By this means, mispredictions will not alter the program 
state. 

As we have described, any updates to the program registers occur only as 
instructions are being retired, and this takes place only after the processor can be 
certain that any branches leading to thisinstruction have been correctly predicted. 
To expedite the communication of results from one instruction to another, much 
of this information is exchanged among the execution units, shown in the figure 
as "Operation Results." As the arrows in the figure show, the execution units can 
send results directly to each other. 

The most common mechanism for controlling the communication of operands 
among the execution units is called register renaming. When an instruction that 
updates register r is decoded, a tag t is generated giving a unique identifier to 
the result of the operation. An entry ( r ,  t )  is added to a table maintaining the 
association between each program register and the tag for an operation that will 
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update this register. When a subsequent instruction using register r as an operand 
is decoded, the operation sent to the Execution unit will contain t as the source 
for the operand value. When some execution unit completes the first operation, it 
generates a result ( v ,  t )  indicating that the operation with tag t produced value v .  
Any operation waiting for t as a source will then use v as the source value. By this 
mechanism, values can be passed directly from one operation to another, rather 
than being written to and read from the register file. The renaming table only 
contains entries for registers having pending write operations. When a decoded 
instruction requires a register r , and there is no tag associated with this register, 
the operand is retrieved directly from the register file. With register renaming, an 
entire sequence of operations can be performed speculatively, even though the 
registers are updated only after the processor is certain of the branch outcomes. 

5.7.2 Functional Unit Performance 

Figure 5.12 documents the performance of some of basic operations for an Intel 
PentiumIII. These timings are typical for other processors as well. Each operation 
is characterized by two cycle counts: the latency, which indicates the total number 
of cycles the functional unit requires to complete the operation; and the issue time, 
which indicates the number of cycles between successive independent operations. 
The latencies range from one cycle for basic integer operations, to several cy- 
cles for loads, stores, integer multiplication, and the more common floating-point 
operations, to many cycles for division and other complex operations. 

As the third column in Figure 5.12 shows, several functional units of the pro- 
cessor are pipelined, meaning that they can start on a new operation before the 
previous one is completed. The issue time indicates the number of cycles between 
successive operations for the unit. In a pipelined unit, the issue time is smaller 
than the latency. A pipelined function unit is implemented as a series of stages, 
each of which performs part of the operation. For example, a typical floating-point 
adder contains three stages: one to process the exponent values, one to add the 
fractions and one to round the final result. The operations can proceed through 
the stages in close succession rather than waiting for one operation to complete 
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Figure 5.12 Performance of Pentium Ill arithmetic operations. Latency represents the 
total number of cyclesfor a single operation. Issue time denotes the number of cycles 
between successive, independent operations. (Obtained from Intel literature). 

Operation 
Integer add 
Integer multiply 
Integer divide 
Floating-point add 
Floating-point multiply 
Floating-point divide 
Load (cache hit) 
Store (cache hit) 

before the next begins. ?his capability can be exploited only if there are succes- 
sive, logically independent operations to be performed. As indicated, most of the 
units can begin a new operation on every clock cycle. The only exceptions are 
the floating-point multiplier, which requires a minimum of two cycles between 
successive operations, and the two dividers, which are not pipelined at all. 

Circuit designers cancreate functional units with a range of performance char- 
acteristics. Creating a unit with short latency or issue time requires more hardware, 
especially for more complex functions such as multiplication and floating-point 
operations. Since there is only a limited amount of space for these units on the 
&icroprocessor chip, the CPU designers must carefully balance the number of 
functional units and their individual performance to achieve optimal overall per- 
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formance. They evaluate many different benchmark programs and dedicate-the 
most resources to the most critical operations. As Figure 5.12 indicates, integer 
multiplication and floating-point multiplication and addition were considered im- 
portant operations in design of the Pentium 111, even though a significant amount 
of hardware is required to achieve the low latencies and high degree of pipelin- 
ing shown. On the other hand, division is relatively infrequent and difficult to 
implement with short latency or issue time, and so these operations are relatively 
slow. 
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5.7.3 A Closer Look at  Processor Operation 

As a tool for analyzing the performance of a machine level program executing 
on a modem processor, we have developed a more detailed textual notation to 
describe the operations generated by the instruction decoder, as well as a graphical 
notation to show the processing of operations by the functional units. Neither 
of these notations exactly represents the implementation of a specific, real-life 
processor. They are simply methods to help understand how a processor can take 
advantage of parallelism and branch prediction when executing a program. 
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Translating Instructions into Operations 

We present our notation by working with combine4 (Figure 5.10), our fastest 
code up to this point as an example. We focus just on the computation performed 
by the loop, since this is the dominating factor in performance for large vectors. 
We consider the cases of integer data with both multiplication and addition as 
the combining operations. The compiled code for this loop with multiplication 
consists of four instructions. In this code, register Beax holds the pointer data, 
%edx holds i, %ecx holds x, and %esi  holds length: 

combined: type=lNT, OPER = * 
data in Beax, x in Becx, i in Be&, length in Besi 

1 .L24: loop: 

2 imull (%eax,%edx,4),%ecx Mu1 tiply x by data ji j 
3 incl %edx i++ 
4 cmpl %esi,%edx Compare i : 1 ength 
5 jl .L24 I£ <, goto loop 

Every time the processor executes the loop, the instruction decoder translates 
these four instructions into a sequence of operations for the Execution unit. On 
the first iteration, with i equal to 0, our hypothetical machine would issue the 
following sequence of operations: 

Assemblv Instructions 1 Execution unit o~erations 

In our translation, we have converted the memory reference by the multiply 
instruction into an explicit load instruction that reads the data from memory into 
the processor. We also have assigned operand labels to the values that change 
each iteration. These labels are a stylized version of the tags generated by register 
renaming. Thus, the value in register %ecx is identified by the label %ecx. 0 at 
the beginning of the loop, and by %ecx. 1 after it has been updated. The register 
values that do not change from one iteration to the next would be obtained directly 
from the register file during decoding. We also introduce the label t . 1 to denote 
the value read by the load operation and passed to the i m u l l  operation, and we 
explicitly show the destination of the operation. Thus, the pair of operations 

.L24: 
imull (%eax,%edx,4),%ecx 

incl %edx 
cmpl %esi,%edx 

jl .L24 

load (%eax, %edx.O, 4) + t.1 
imull t.1, %ecx.O + %ecx. 1 

load (%eax, %edx.O, 4) + t. 1 

imull t.1, %ecx.O + %ecx. 1 

incl %edx. 0 + %edx.l 

cmpl %esi, %edx.l + cc. 1 

jl-taken cc.1 

indicates that the processor 6tst performs a load operation, computing the ad- 
dress using the value of %eax (which does not change duriig the loop), and the 
value stored in %edx at the start of the loop. This will yield a temporary value, 
which we label t .I. The multiply operation then takes this value and the value of 
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%ecx at the start of the loop and produces a new value for %ecx. As this example 
illustrates, tags can be associated with intermediate values that are never written 
to the register file. 

The operation 

incl %edu.O -t %edx.l 

indicates that the increment operation adds 1 to the value of %edx at the start of 
the loop to generate a new value for this register. 

The operation 

cmpl %esi, %edx.l -t cc.1 

indicates that the compare operation (performed by either integer unit) compares 
the value in %esi (which does not change in the loop) with the newly computed 
value for %edx. It then sets the condition codes identified with the explicit label 
cc .1 .  As this example illustrates, the processor can use renaming to track changes 
to the condition code registers. 

Finally, the jump instruction was predicted as being taken. The jump operation 

jl-taken cc.1 

checks whether the newly computed values for the condition codes (cc . 1) indi- 
cate this was the correct choice. If not, then it signals the ICU to begin fetching 
instructions at the instruction following the j 1. To simplify the notation, we omit 
any information about the possible jump destinations. In practice, the processor 
must keep track of the destination for the unpredicted direction, so that it can 
begin fetching from there in the event the prediction is incorrect. 

As this example translation shows, our operations mimic the structure of 
the assembly-language instructions in many ways, except that they refer to their 
source and destination operations by labels that identlfy different instances of the 
registers. In the actual hardware, register renaming dynamically assigns tags to 
indicate these different values. Tags are bit patterns rather than symbolic names 
such as "%edx. 1," but they serve the same purpose. 

Processing of Operations by the Execution Unit 

Figure 5.13 shows the operations in two forms: that generated by the instruc- 
tion decoder and that shown as a computation graph in which operations are 
represented by rounded boxes and arrows indicate the passing of data between 
operations. We only show the arrows for the operands that change from one iter- 
ation to the next, since only these values are passed directly between functional 
units. 

The height of each operator box indicates how many cycles the operation 
requires-that is, the latency of that particular function. In this case, integer multi- 
plication imull requires four cycles, load requires three, and the other operations 
require one. In demonstrating the timing of a loop, we position the blocks verti- 
cally to represent the times when operations are performed, with time increasing 
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t e d x . 0  

Execution unit operations 
load (%eax, Bedx.0, 4) -t t.1 
imull t.1, Becx.0 -P %ecx. 1 

incl %edx.O -t Bedx.1 
cmpl Besi, %edx.l -P cc.1 
jl-taken cc.1 

Figure 5.13 Operationsfor first iteration of inner loop of combine4 for integer multiplication. Memory reads are 
explicitly converted to loads. Register names are tagged with instance numbers. 

in the downward direction. We can see that the five operations for the loop form 
two parallel chains, indicating two series of computations that must be performed 
in sequence. The chain on the left processes the data, first reading an array ele- 
ment from memory and then multiplying it times the accumulated product. The 
chain on the right processes the loop index i, first incrementing it and then com- 
paring it to length. The jump operation checks the result of this comparison to 
make sure the branch was correctly predicted. Note that there are no outgoing 
arrows from the jump operation box. If the branch was correctly predicted, no 
other processing is required. If the branch was incorrectly predicted, then the 
branch function unit will signal the instruction fetch control unit, and this unit will 
take corrective action. In either case, the other operations do not depend on the 
outcome of the jump operation. 

Figure 5.14 shows the same translation into operations but with integer ad- 
dition as the combining operation. As the graphical depiction shows, all of the 
operations, except load, now require just one cycle. 

%edx.  0  

Execution unit operations 
load (%eax, Bedx.0, 4) 
add1 t.1, %ecx.O Becx. 1 
incl Bedx. 0 + Bedx.1 
cmpl %esi, %edx.l -t cc.1 
jl-taken cc.1 

% e c x .  l 

Figure 5.14 Operations for first iteration of inner loop of combine4 for integer 
addition. Compared to multiplication, the only change is that the addition operation 
requires only one cycle. 
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Scheduling of Operations with Unlimited Resources 

To see how a processor would execute a series of iterations, imagine first a proces- 
sor with an unlimited number of functional units and with perfect branch predic- 
tion. Each operation could then begin as soon as its data operands were available. 
The performance of such a processor would be limited only by the latencies and 
throughputs of the functional units, and the data dependencies in the program. 
Figure 5.15 shows the computation graph for the first three iterations of the loop 
in combine4 with integer multiplication on such a machine. For each iteration, 
there is a set of five operations with the same configuration as those in Figure 
5.13, with appropriate changes to the operand labels. The arrows from the opera- 
tors of one iteration to those of another show the data dependencies between the 
different iterations. 

Each operator is placed vertically at the highest position possible, subject to 
the constraint that no arrows can point upward, since this would indicate infor- 
mation flowing backward in time. bus, the load operation of one iteration can 
begin as soon as the incl operation of the previous iteration has generated an 
updated value of the loop index. 

Figure 5.1 5 
Scheduling of 
operations for integer 
multiplication with 
unlimited number 
of execution units. 
The 4 cycle latency of 
the multiplier is the 
performance-limiting 
resource. 
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The computation graph shows the parallel execution of operations by the 
Execution unit. On each cycle, all of the operations on one horizontal line of the 
graph execute in parallel. The graph also demonstrates out-of-order, speculative 
execution. For example, the incl operation in one iteration is executed before 
the j 1 instruction of the previous iteration has even begun. We can also see the 
effect of pipelining. Each iteration requires at least seven cycles from start to 
end, but successive iterations are completed every four cycles. Thus, the effective 
processing rate is one iteration every four cycles, giving a CPE of 4.0. 

The four-cycle latency of integer multiplication constrains the performance 
of the processor for this program. Each imull operation must wait until the 
previous one has completed, since it needs the result of this multiplication before 
it can begin. In our figure, the multiplication operations begin on cycles 4,8, and 
12. With each succeeding iteration, a new multiplication begins every fourth cycle. 

Figure 5.16 shows the first four iterations of combine4 for integer addition 
on a machine with an unbounded number of functional units W~th a single-cycle 
combining operation, the program could achieve a CPE of 1.0. We see that as the 
iterations progress, theExecution unit would perform parts of seven operations on 
each clock cycle. For example, in cycle 4 we can see that the machine is executing 
the add1 for iteration 1; different parts of the load operations for iterations 2,3, 
and 4; the j 1 for iteration 2; the cmpl for iteration 3; and the incl for iteration 4. 

Scheduling of Operations with Resource Constraints 

Of course, a real processor has only a fixed set of functional units. Unlike our 
earlier examples, where the performance was constrained only by the data depen- 
dencies and the latencies of the functional units, performance becomes limited by 
resource constraints as well. In particular, ourprocessor has only two units capable 
of performing integer and branch operations. In contrast, the graph of Figure 5.15 
has three of these operations in parallel on cycles 3 and four in parallel on cycle 4. 

Iteration 4 

Figure 5.16 Scheduling of operations for integer addition with unbounded resource constraints. 
With unbounded resources the processor could achieve a CPE of 1 .O. 
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Figure 5.17 shows the scheduling of the operations for combine4 with integer 
multiplication on a resource-constrained processor. We assume that the general 
integer unit and the branchlinteger unit can each begin a new operation on every 
clock cycle. It is possible to have more than two integer or branch operations 
executing in parallel, as shown in cycle 6, because the imull operation isin its 
third cycle by this point. 

With constrained resources, our processor must have some scheduling policy 
that determines which operation to perform whenit has more than one choice. For 
example, in cycle 3 of the graph of Figure 5.15: we show three integer operations 

Iteration 4 

Figure 5.17 Scheduling of operations for integer multiplication with actual resource constraints. The 
multiplier latency remains the performance-limiting factor. - .  
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being executed: the j i  of iteration 1, the cmpl of iteration 2, and the incl of 
iteration 3. For Figure 5.17, we must delay one of these operations. We do so by 
keeping track of the program order for the operations, that is, the order in which 
the operations would be performed if we executed the machine-level program in 
strict sequence. We then give priority to the operations according to their program 
order. In this example, we would defer the incl operation, since any operation 
of iteration 3 is later in program order than those of iterations 1 and 2. Similarly, 
in cycle 4, we would give priority to the imull operation of iteration 1 and the 
j 1 of iteration 2 over that of the incl operation of iteration 3. 

For this example, the limited number of functional units does not slow down 
our program. Performance is still constrained by the four-cycle latency of integer 
multiplication. 

For the case of integer addition, the resource constraints impose a clear lim- 
itation on program performance. Each iteration requires four integer or branch 
operations, and there are only two functional units for these operations. Thus, we 
cannot hope to sustain a processing rate any better than two cycles per iteration. 
In creating the graph for multiple iterations of combine4 for integer addition, 
an interesting pattern emerges. Figure 5.18 shows the scheduling of operations 
for iterations 4 through 8. We chose this range of iterations because it shows a 
regular pattern of operation timings. Observe how the timing of all operations 
in iterations 4 and 8 is identical, except that the operations in iteration 8 occur 
eight cycles later. As the iterations proceed, the patterns shown for iterations 4 
to 7 would keep repeating. Thus, we complete four iterations every eight cycles, 
achieving the optimum CPE of 2.0. 

Summary of combine4 Performance 

We now can consider the measured performance of combine4 for all four com- 
binations of data type and combining operations: 

L I I I 

Lcombined ( 394 1 Accumulate in temporary 1 2.00 4.00 / 3.00 5.00 
- 

With the exception of integer addition, these cycle times nearly match the 
latency for the combining operation, as shown in Figure 5.12. Our transformations 
to this point have reduced the CPE value to the point where the time for the 
combining operation becomes the limiting factor. 

For the case of integer addition, we have seen that the limited number of func- 
tional units for branch and integer operations limits the achievable performance. 
With four such operations per iteration, and just two functional units, we cannot 
expect the program to go faster than 2 cycles per iteration. 

In general, processor performance is limited by three types of constraints. 
Fist, the data dependencies in the program force some operations to delay until 
their operands have been computed. Since the functional units have latencies of 
one or more cycles, this places a lower bound on the number of cycles in which a 

Function Page Method Integer I Floating point 
+ * + * 
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m 

13 

14 --- ..-...p-< 

15 
.8 

16 

17 

18 

Iteration 8 

Figure 5.18 Scheduling of operations for integer addition with actual resource constraints. The limitation to 
two integer units constrains performance to a CPE of 2.0. 

given sequence of operations can be performed. Second, the resource constraints 
limit how many operations can be performed at any given time. We have seen 
that the limited number of functional units is one such resource constraint. Other 
constraints include the degree of pipelining by the functional units, as well as lim- 
itations of other resources in the ICU and the EU. For example, an Intel Pentium 
I11 can only decode three instructions on every clock cycle. Finally, the success 
of the branch prediction logic constrains the degree to which the processor can 
work far enough ahead in the instruction stream to keep the execution unit busy. 
Whenever a misprediction occurs, a significant delay occurs getting the processor 
restarted at the correct location. 

5.8 Reducing Loop Overhead 

The performance of combine4 for integer addition is limited by the fact that 
each iteration contains four instructions, with only two functional units capable 
of perkrming them. Only one of these four instructions operates on the program 
data. The others are part of the loop overhead of computing the loop index and 
testing the loop condition. 
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1 / +  Unroll loop by 3 * /  

2 void combine5(vecqtr v, data-t *dest) 
3 I 
4 int length = vec-length(v); 
5 int limit = length-2; 
6 data-t *data = get-vec-start(v); 
7 data-t x = IDENT; 
8 int i; 
9 

10 / *  Combine 3 elements at a time * I  
11 for (i = 0; i < limit; i+=3) { 
12 x = x OPER dataril OPER data[i+ll OPER data[i+2]; 
13 1 
14 
15 / *  Finish any remaining elements * /  
16 for ( ;  i < length; i++) { 

17 x = x OPER data[il; 
18 1 
19 *dest = x; 
20 1 

Figure 5.19 Unrolling loop by 3. Loop unrolling can reduce the effect of loop overhead. 

We can reduce overhead effects by performing more data operations in each 
iteration, using a technique known as loop unrolling. The idea is to access and 
combine multiple array elements within a single iteration. The resulting program 
requires fewer iterations, leading to reduced loop overhead. 

Figure 5.19 shows a version of our combining code using three-way loop un- 
rolling. The first loop steps through the array three elements at a time. That is, 
the loop index i is incremented by three on each iteration, and the combining 
operation is applied to array elements i ,  i + 1, and i + 2 in a single iteration. 

In general, the vector length will not be a multiple of 3. We want our code 
to work correctly for arbitrary vector lengths. We account for this requirement 
in two ways. We first make sure the first loop does not overrun the array bounds. 
For a vector of length n ,  we set the loop limit to be n - 2. We are then assured 
that the loop will only be executed when the loop index i satisfies i < n - 2 ,  and 
hence the maximum array index i + 2 will satisfy i + 2 < (n - 2) + 2 = n. In 
general, if the loop is unrolled by k ,  we set the upper limit to be n - k + 1. The 
maximum loop index i + k - 1 will then be less than n. In addition to this, we add 
a second loop to step through the h a 1  few elements of the vector one at a time. 
The body of this loop will be executed between 0 and 2 times. 
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To better understand the performance of code with loop unrolling, let us look 
at the assembly code for the inner loop and its translation into operations: 

-Assembly Instructions I  EX^& unit operations -1 - 

.L49: 
add1 (%eax,%edx,4),%ecx 

add1 4 (%eax, %edx,4), %ecx 

load (%eax, %edx.O, 4) i t.la 
add1 t.la, %ecx.Oc i %ecx. la 
load 4 (%eax, %edx. 0, 4) i t. lb 
add1 t.lb, %ecx.la i %ecx. lb 

add1 8(%eax,%edx,4),%ecx 

add1 %edx , 3  
cmpl %esi,%edx 

As mentioned earlier, loop unrolling by itself will only help the performance of the 
codefor the case of integer sum, because our other cases are limited by the latency 

load 8(%eax, Bedx.0, 4) i t.lc 
add1 t.lc, %ecx.lb i %ecx. lc 

add1 %edx.O, 3 i %edx. 1 
cmpl %esi, %edx.l i cc. 1 

1 jl . ~ 4 9  

of the functional units. For integer sum, three-way unrolling allows us to combine 

ji-taken cc.1 - 2 

three elements with six integer/branch operations, as showi in Figure 5.20. With 
two functional units for these operations, we could potentially achieve a CPE of 
1.0. Figure 5.21 shows that once we reach iteration 3 (i = 6), the operations 
would follow a regular pattern. The operations of iteration 4 (i = 9) have the 
same timings, but shifted by three cycles. This would indeed yield a CPE of 1.0. 

Our measurement for this function shows a CPE of 1.33, that is, we require 
four cycles per iteration. Evidently some resource constraint we did not account 
for in our analysis delays the computation by one additional cycle per iteration. 
Nonetheless, this performance represents an improvement over the code that did 
not use loop unrolling. 

Figure 5.20 Operations for first iteration of inner loop of three-way unrolled integer addition. With this degree of 
loop unrolling we can combine three array elements using six integerlbranch operations. 

%edx. 0 

-- 
Execution unit operations- 3 
load (%eax, Bedx.0, 4) i t.la 
add1 t.la, %ecx.Oc + %ecx.la 
load 4(%eax, %edx.O, 4) i t.1b 
add1 t.lb, %ecx.la + %ecx. lb 
load 8(%cax, %edx.O, 4 )  i t.lc 
add1 t.lc, %ecx.lb i %ecx. lc 
add1 %edx.O, 3 i %edx.l 
cmpl %esi, %edx.l + cc.1 
jl-taken cc.1 

%ecx.oc 

-+ 
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Figure 5.21 Scheduling of operations for three-way unrolled integer sum with bounded resource 
constraints. In principle, the procedure can achieve a CPE of 1.0. The measured CPE, however, is 
1.33. 

Measuring the performance for different degrees of unrolling yields the fol- 
lowing values for the CPE: 

As these measurements show, loop unrolling can reduce the CPE. With the loop 
unrolled by a factor of two, each iteration of the main loop requires three clock 
cycles, giving a CPE of 312 = 1.5. As we increase the degree of unrolling, we 
generally get better performance, nearing the theoretical CPE limit of 1.0. It is 
interesting to note that the improvement is not monotonic: Unrolling by three 
gives better performance than does unrolling by four. Evidently, the scheduling 
of operations on the execution units is less efficient for the latter case. 

Our CPE measurements do not account for overhead factors such as the cost 
of the procedure call and of setting up the loop. With loop unrolling, we introduce 
a new source of overhead-the need to finish any remaining elements when the 
vector length is not divisible by the degree of unrotling. To investigate the impact 
of overhead, we measure the net CPE for different vector lengths. The net CPE is 
computed as the total number of cycles required by the procedure divided by the 
number of elements. For the different degrees of unrolling, and for two different 
vector lengths, we obtain the following data: 

Vector length 

CPE 

Degree of unrolling 
1 2 3 4 8 16 

2.00 1.50 1.33 1.50 1.25 1.06 
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I Vector length I Degree of unrolling 7 

31 Net CPE 4.02 3.57 3.39 3.84 3.91 3.66 

The distinction between CPE and net CPE is minimal for long vectors, as 
seen with the measurements for length 1024, but the impact is significant for short 
vectors, as seen with the measurements for length 31. Our measurements of the 
net CPE for a vector of length 31 demonstrate one drawback of loop ~ ~ 0 l l i n g .  
Even with no unrolling, the net CPE of 4.02 is considerably higher than the 2.06 
measured for long vectors. The overhead of starting and completing the loop 
becomes far more significant when the loop is executed a smaller number of times. 
In addition, the benefit of loop unrolling isiess significant. Our unrolled code must 
start and stop twoloops, and it must complete the final elements one at a time. The 
overhead decreases withincreasedloopunrolling, while the number of operations 
performed in the final loop increases. With a vector length of 1024, performance 
generally improves as the degree of unrolling increases. With a vector length of 
31, the best performanceis achieved by unrolling the loop by only afactor of three. 

A second drawback of loop unrolling is that it increases the amount of object 
code generated. The object code for combine4 requires 63 bytes whereas the 
object code with the loop unrolled by a factor of 16 requires 142 bytes. In this 
case, that seems like a small price to pay for code that runs nearly twice as fast. In 
other cases, however, the optimum position in this time-space tradeoff is not so 
clear. 

Aside: Getting the compiler to unroll loops. 

Loop unrolling can easily be performed by a compiler. Many compilers do it routinely whenever the 
optimizat~on level is set sufficiently high (for example, with optimization flag '-02'). Gcc will perform 
loop unrolling when invoked with '-funroll-loops' on the command line. 

5.9 Converting to Pointer Code 

Before proceeding further, we should attempt one more transformation that can 
sometimes improve program performance, but at the expense of program read- 
ability. One of the unique features of Cis the ability tocreate and reference point- 
ers to-arbitrary programobjects. Pointer arithmetic, in fact, has a close connection 
to array referencing. The combination of pointer arithmetic and referencing given 
by the expression * (ati ) is exactly equivalent to the array reference a [i I . At 
times, we can improve the performance of a program by using pointers rather than 
arrays. 

Figure 5.22 shows an example of converting the procedures combine4 and 
combine5 to pointer code, giving procedures combinelp and combine5p, re- 
spectively. Instead of keeping pointer data f i e d  at the beginning of the vector, 
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we move it with each iteration. The vector elements are then referenced by a fixed 
offset (between 0 and 2) of data. Most significantly, we can eliminate the iter- 
ation variable i from the procedure. To detect when the loop should terminate, 
we compute a pointer dend to be an upper bound on pointer data. Comparing 
the performance of these procedures with their array counterparts yields mixed 
results: 

code/opt/combine.c 
1 / *  Accumulate in local variable, pointer verslon ' /  
2 void combine4p(vecqtr v, data-t *dest) 
3 I 
4 int length = vec-length(v); 
5 data-t *data = get-vec-start(v); 
6 data-t *dend = data+length; 
7 data-t x = :DENT; 
8 
9 for ( ;  data < dend; data++) 
10 x = x OPER *data; 
11 *dest = x; 
12 I 

codelopt/combine.c 
(a) Pointer version of combine4. 

code/opt/combine. c 

1 / *  Unroll loop by 3, pointer version *I 
2 void combine5p(vecqtr v, data-t *dest) 
3 I 
4 data-t *data = get-vec-start (v) ; 
5 data-t *dend = data+vec-length(v1; 
6 data-t *dlimit = dend-2; 
7 data-t x = IDENT; 
8 
9 / *  Combine 3 elements at a time * /  
10 for ( ;  data < dlimit; data += 3 )  I 
11 x = x OPER data101 OPER data[l] OPER datal21; 
12 I 
13 
14 /t Finish any remaining elements '1 
15 for ( ;  data < dend; data++) 
16 x = x OPER dataL01; 
17 ) 

18 *dest = x; 
19 ) 

code/opt/combine.c 
(b) Pointer version of combine5 

Figure 5.22 Converting array code to pointer code. In some cases, this can lead to 
improved performance. 
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F 1 T d  

For most of the cases, the array and pointer versions have the exact same perfor- 
mance. With pointer code, the CPE for integer sum with no unrolling actually gets 
worse by one cycle. This result is somewhat surprising, since the inner loops for 
the pointer and array versions are very similar, as shown in Figure 5.23. It is hard 
to imagine why the pointer code requires an additional clock cycle per iteration. 
Just as mysteriously, versions of the procedures with four-way loop unrolling yield 
a one-cycle-per-iteration improvement with pointer code, giving a CPE of 1.25 
(five cycles per iteration) rather then 1.5 (six cycles per iteration). 

In our experience, the relative performance of pointer versus array code de- 
pends on the machine, the compiler, and even the particular procedure. We have 
seen compilers that apply very advanced optimizations to array code but only 
minimal optimizations to pointer code. For the sake of readability, array code is 
generally preferable. 

Integer I Floating point 
+ t .L 

combine4 

combine4p 

combine5 

combine5p 

combine5x4 

combine5px4 

combinel: type=INT, OPER = '+ '  
data i n  %ear, x i n  %ecx ,  i i n  Bedx, l e n g t h  i n  % e s i  

1 .L24: loop: 
2 add1 (%eax,%edx,4) ,%ecx Add d a t a i i l  t o  x 

3 incl %edx i++ 
4 cmpl %esi, %edx Compare i : 1 ength  

5 jl .L24 I f  <, go to  loop 

(a) Array code 

394 
413 
409 
413 - 

combinelp: type=INT, OPER = ' + ' 
data i n  %eax, x i n  Becx, dend i n  8edu 

1 .L30 :  loop: 
2 add1 (%eax) , %ecx Add datai01 t o  x 
3 add1 $4,%eax data++ 

4 cmpl %edx,%eax Compare da ta :  dend 

5 jb .L30 I f  <, gc to  loop 

(b) Pointer code 

Accumulate in temporary 
Pointer version 
Unroll loop x3 
Pointer version 
Unroll loop x 4 
Pointer version 

Figure 5.23 Pointer code performance anomaly. Although the two programs are very 
similar in structure, the array code requires two cycles per iteration, while the pointer code 
requires three. 

2.00 4.00 
3.00 4.00 
1.33 4.00 
1.33 4.00 
1.50 4.00 
1.25 4.00 

3.00 5.00 
3.00 5.00 
3.00 5.00 
3.00 5.00 
3.00 5.00 
3.00 5.00 
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I At times, GCC does its own version of converting array code to pointer code. 
For example, with integer data and addition as the combining operation, it 
generates the following code for the inner loop of a variant of combine5 that 
uses eight-way loop unrolling: 

. L6 : 
add1 (%eax) , %edx 
add1 4 (%eax) , %edx 
add1 8 (%eax) , %edx 
add1 12 (%eax) , %edx 
add1 16(%eax),%edx 
add1 20(%eax),%edx 
add1 24(%eax),%edx 
add1 28(%eax),%edx 
add1 $32,%eax 
add1 $8,%ecx 
cmpl %esi,%ecx 
jl .L6 

I Observe how register Beax is being incremented by 32 on each iteration. 
Write C code for a procedure combine5px8 that shows how pointers, 

loop variables, and termination conditions are being computed by this code. 
Show the general form with arbitrary data and combining operation in the 
style of Figure 5.19. Describe how it differs from our handwritten pointer code 

1 (Figure 5.22). 

5.10 Enhancing Parallelism 

At this point, our programs are limited by the latency of the functional units. As 
the third column in Figure 5.12 shows, however, several functional units of the pro- 
cessor are pipelined, which means that they can start on a new operation before 
the previous one is completed. Our code cannot take advantage of this capability, 
even with loop unrolling, since we are accumulating the value as a single variable 
x. We cannot compute a new value of x until the preceding computation has com- 
pleted. As a result, the processor will stall, waiting to begin a new operation until 
the current one has completed. 'Ihis limitation shows clearly in Figures 5.15 and 
5.17. Even with unbounded processor resources, the multiplier can only produce 
a new result every four clock cycles. Similar limitations occur with floating-point 
addition (three cycles) and multiplication (five cycles). 

5.10.1 Loop Splitting 

For a combining operation that is associative and commutative, such as integer 
addition or multiplication, we can improve performance by splitting the set of 
combining operations into two or more parts and combining the results at the 

i 

1 
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end. For example, let P, denote the product of elements ao, a l ,  . . . , a,-1: 

Assuming n is even, we can also write this as P, = PE, x PO,, where PE, is the 
product of the elements with even indices, and PO, is the product of the elements 
with odd indices: 

n/2-2 

PE, = n a2i 
i=O 

Figure 5.24 shows code that uses this method. It uses both two-way loop 
unrolling, to combine more elements per iteration, and two-way parallelism, ai-  
cumulating elements with evenindex in variable xO, and elements with odd index - 
in variable xl. As before, we include a second loop to accumulate any remaining 

1 I* Unrcll loop by 2, 2-way parallelism * I  
2 void combine6(vecqtr v, data-t *dest) 
3 ( 
4 int length = vec-length(v); 
5 int limit = length-1; 
6 data-t *data = get-vec-start(v); 
7 data-t xO = IDENT; 
8 data-t xl = IDENT; 
9 int i; 
10 

11 / *  Combine 2 elements at a time * I  
12 for (i = 0 ;  i < limit; i+=2) ( 

13 xO = xO OPER datafi]; 
14 . xl=xlOPERdata[i+ll: 
15 1 
16 

17 / *  Finish any remaining elements * /  
18 for ( ;  i < length; i++) { 

19 xO = xO OPER data[il; 
20 I 
21 *dest = xO OPER xl; 
22 1 

Figure 5.24 Unrolling loop by 2 and using two-way parallelism. This approach makes 
use of the pipelining capability of the functional units. 
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I 
i array elements for the case where the vector length is not a multiple of 2. We then 

apply the combining operation to xO and xl to compute the h a 1  result. 
, 
1 
! 
I 

To see how this code yields improved performance, let us consider the trans- 
I lation of the loop into operations for the case of integer multiplication: I 

-- [ Execution unit operations 

imull (%eax,%edx,4),%ecx 

imull 4(%eax,%edx,4),%ebx 

add1 $2,%edx 
cmpl %esi,%edx 

load (%eax, %edx.O, 4) + t. la 
imull t.la, %ecx.O + %em. 1 
load4(%eax, %edx.O,4) -+ t. lb 
imull t.lb, %ebx.O -+ %ebx . 1 
add1 $2, %edx. 0 -+ %edx.l 
cmpl %esi, %edx.l -+ cc. 1 

jl-taken cc.1 

Figure 5.25 shows a graphical representation of these operations for the first iter- 
ation (i = 0). As this diagram illustrates, the two multiplications in the loop are 
independent of each other. One has register %ecx as its source and destination 
(corresponding to program variable xO), while the other has register %ebx as its 
source and destination (corresponding to program variable xl). The second mul- 
tiplication can start just one cycle after the fust. This makes use of the pipelining 
capabilities of both the load unit and the integer multiplier. 

%edx. 1 

Execution unit operations 
load (%eax, gedx.0, 4) 
imull t.la, %ecx.O 
load 4(%eax, %edx.O, 41 
imull t.lb, %ebx.O %ebx. 1 
add1 $2, %edx.O -+ %edx.l 
cmpl %esi, %edx.l -+ cc.1 
jl-taken cc.1 

Figure 5.25 Operations for first iteration of inner loop of two-way unrolled, two-way parallel integer 
multiplication. The two multiplication operations are logically independent. 
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1 1  

-,-- .we,-."-, 
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13 -- 
14 

15 

16 
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Iteration 3 

Figure 5.26 Scheduling of operations for two-way unrolled, two-way parallel integer multiplication 
with unlimited resources. The multiplier can now generate two values every 4 cycles. 

Figure 5.26 shows a graphical representation of the first three iterations (i = 
0,2,  and 4) for integer multiplication. For each iteration, the two multiplications 
must wait until the results from the previous iteration have been computed. Still, 
the machine can generate two results every four clock cycles, giving a theoretical 
CPE of 2.0. In this figure, we do not take into account the limited set of inte- 
ger functional units, but this does not prove to be a limitation in this particular 
procedure. 
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Comparing loop unrolling alone to loop unrolling with two-way parallelism, 
we obtain the following performance: 

For integer sum, parallelism does not help, as the latency of integer addition is 
only one clock cycle. For integer and floating-point product, however, we reduce 
the CPE by a factor of 2. We are essentially doubling the use of the functional 
units. For floating-point sum, some other resource constraint is limiting our CPE 
to 2.0, rather than the theoretical value of 1.5. 

We have seen earlier that two's complement arithmetic is commutative and 
associative, even when overflow occurs. Hence, for an integer data type, the result 
computed by combine6 will be identical to that computed by combine5 under 
all possible conditions. Thus, an optimizing compiler could potentially convert 
the code shown in combine4 first to a two-way unrolled variant of combine5 
by loop unrolling, and then to that of combine6 by introducing parallelism. This 
is referred to as iteration splitting in the optimizing compiler literature. Many 
compilers do loop unrolling automatically, but relatively few do iteration splitting. 

On the other hand, we have seen that floating-point multiplication and addi- 
tion are not associative. Thus, combine5 and combine6 could produce different 
results due to rounding or overflow. Imagine, for example, a case in which all the 
elements with even indices were numbers with very large absolute value, while 
those with odd indices were very close to 0.0. Then, product PE, might overflow, 
or PO, might underflow, even though the final product P, does not. In most 
real-life applications, however, such patterns are unlikely. Since most physical 
phenomena are continuous, numerical data tend to be reasonably smooth and 
well-behaved. Even when there are discontinuities, they do not generally cause 
periodic patterns that lead to a condition such as that sketched earlier.. It is 
unlikely that summing the elements in strict order gives fundamentally better ac- 
curacy than does summing two groups independently and then adding those sums 
together. For most applications, achieving a performance gain of 2X outweighs 
the risk of generating different results for strange data pattcms. Nevertheless, a 
program developer should check with potential users to see if there are particular 
conditions that may cause the revised algorithm to be unacceptable. 

Just as we can unroll loops by an arbitrary factor k,  we can also increase the 
parallelism to any factor p such that k is divisible by p. The following are some 
results for different degrees of unrolling and parallelism: 
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Integer / Floating point I 
t * t * I 

Unroll x 2  

Unroll x4 

Unroll x8 

As this table shows, increasing the degree of loop unrolling and the degree of 
parallelism helps program performance up to some point, but it yields diminishing 
improvement or even worse performance when taken to an extreme. In the next 
section, we will describe two reasons for this phenomenon. 

5.10.2 Register Spilling 

The benefits of loop parallelism are l i i t e d  by the ability to express the compu- 
tation in assembly code. In particular, the IA32 instruction set only has a small 
number of registers to hold the values being accumulated. If we have a degree of 
parallelism p that exceeds the number of available registers, then the compiler will 
resort to spilling, storing some of the temporary values on the stack. Once this 
happens, the performance drops dramatically. This occurs for our benchmarks 
when we attempt to have p = 8. Our measurements show the performance for 
this case is worse than that for p = 4. 

For the case of the integer data type, there areonly eight totalinteger registers 
available. Two of these (Bebp and Besp) point to regions of the stack. With the 
pointer version of the code, one of the remaining six holds the pointer data, and 
one holds the stopping position dend. This leaves only four integer registers for 
accumulating values. With the array versionof the code, we require three registers 
to hold the loop index i, the stopping index l i m i t ,  and the array address data. 
This leaves only three registers for accumulating values. For the floating-point 
data type, we need two of eight registers to hold intermediate values, leaving six 
for accumulating values. Thus, we could have a maximum parallelism of sii before 
register spilling occurs. 

This limitation to eight integer and eight floating-point registers is an un- 
fortunate artifact of the IA32 instruction set. The renaming scheme described 
previously eliminates the direct correspondence between register names and the 
actual location of the register data. In a modem processor, register names serve 
simply to identlfy the program values being passed between the functional units. 
IA32 provides only a small number of such identifiers, constraining the amount 
of parallelism that can be expressed in programs. 

The occurrence of spilling can be seen by examining the assembly code. For 
example, within the first loop for the code with eight-way parallelism, we see the 
following instruction sequence: 
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type=INT, OPER = ' * '  
x6 i n  -12 ( % e b p ) ,  data+i  i n  %eax 

1 movl -12 (%ebp) , %edi Get x6 from s t a c k  

2 imull 24 (%eax) , Bedi M u l t i p l y  by da ta i i c61  
3 movl Bedi, -12 (%ebp) Put x6 back 

In this code, a stack location is being used to hold x6, one of the eight local 
variables used to accumulate sums. The code loads it into a register, multiplies 
it by one of the data elements, and stores it back to the same stack location. As 
a general rule, whenever a compiled program shows evidence of register spilling 
within some heavily used inner loop, it may be preferable to rewrite the code 
so that fewer temporary values are required. This can be done by reducing the 
number of local variables. 

The following shows the code generated from a variant of combine6 that uses 
eight-way loop unrolling and four-way parallelism. 

.L152: 
add1 (%eax) , %ecx 
add1 4 (%eax), Besi 
add1 8 (%eaxl , %edi 
add1 12 (%eax) , %ebx 
add1 16 (%eax) , %ecx 
add1 20 (Beax), %esi 
add1 24 (%eaxl , %edi 
add1 28 (%eax) , %ebx 
add1 S32,Beax 
add1 $8,%edx 
cmpl -8 (%ebp) , %edx 
jl .L152 

I A. What program variable has being spilled onto the stack? 

B. At what location on the stack? 

C. Why is this a good choice of which value to spill? 

With floating-point data, we want to keep all of the local variables in the 
floating-point register stack. We also need to keep the top of stack available for 
loading data from memory. This limits us to a degree of parallelism less than or 
equal to 7. 

5.10.3 Limits to Parallelism 

For our benchmarks, the main performance limitations are due to the capabili- 
ties of the functional units. As Figure 5.12 shows, the integer multiplier and the 
floating-point adder can only initiate a new operation every clock cycle. This, 
plus a similar limitation on the load unit, limits these cases to a CPE of 1.0. The 
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floating-point multiplier can only initiate a new operation every two clock cycles. 
This limits this case to a CPE of 2.0. Integer sum is limited to a CPE of 1.0, due to 
the limitations of the load unit. This leads to the following comparison between 
the achieved performance and the theoretical limits: 

In this table, we have chosen the combination of unrolling and parallelism that 
achieves the best performance for each case. We have been able to get close to the 
theoretical limit for integer sum and product and for floating-point product. Some 
machine-dependent factor (or factors) limits the achieved CPE for floating-point 
multiplication to 1.50 rather than the theoretical limit of 1.0. 

Consider the following function for computing the product of an array of n 

integers. We have unrolled the loop by a factor of 3. 

Floating point 
+ * 

1.50 2.00 
1.00 2.00 

- 
Method 

Achieved 
Theoretical limit 

int aprod(int a[], int n) 
( 

int i, x, y, z; 
int r = 1; 
for (i = 0; i < n-2: i+= 3 )  I 

x = a[i]; y = a[i+ll; z = a[i+21; 
r = r * x ' y * z; / i  Product  computation * /  

1 
for ( ;  i n; 9 + + )  

r *= a l i ] ;  
return r; 

Integer 
+ f 

1.06 1.25 
1.00 1.00 

1 

For the line labeled Product computation, we can use parentheses to 
create five different associations of the computation, as follows: 

We measured the five versions of the function on an Intel Pentium 111. Recall 
from Figure 5.12 that the integer multiplication operation on this machine has 
a latency of 4 cycles and an issue time of 1 cycle. 
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The table that follows shows some values of the CPE and other values 
missing. The measured CPE values are those that were actually observed. 
"Theoretical CPE" means that performance that would be achieved if the only 
limiting factor were the latency and issue time of the integer multiplier. 

Fi in the missing entries For the missing values of the measured CPE, you 
can use the values from other versions that would have the same computational 
behavior. For the values of the theoretical CPE, you can determine the number 
of cycles that would be required for an iteration considering only the latency 
and issue time of the multiplier, and then divide by 3. 

5.11 Putting it Together: Summary of Results for Optimizing 
Combining Code 

We have now considered six versions of the combining code, some of which had 
multiple variants. Let us pause to take a look at the overall effect of this effort and 
how our code performs on a different machine. Figure 5.27 shows the measured 
performance for all of our routines plus several other variants. As can be seen, we 
achieve maximum performance for the integer sum by simply unrolling the loop 
many times, whereas we achieve maximum performance for the other operations 
by introducing some, but not too much, parallelism. The overall performance gain 
of 27.6X and better from our original code is quite impressive. 

5.1 1.1 Floating-Point Performance Anomaly 

One of the most striking features of Figure 5.27 is the dramatic drop in the cy- 
cle time for floating-point multiplication when we go from combine3, where the 
product is accumulated in memory, to combinel, where the product is accumu- 
lated in a floating-point register. By making this small change, the code suddenly 
runs 23.4 times faster. When such~an unexpected result arises, it is important to 
hypothesize what might have caused this behavior and then to devise a series of 
tests to evaluate the hypothesis. 

When we examine the table, it appears that something strange is happening 
for the case of floating-point multiplication when we accumulate the results in 
memory. The is far worse than for floating-point addition or inte- 
ger multiplication, even though the number of cycles for the functional units are 
comparable. On an IA32 processor, all floating-point operations are performed 
in extended 80-bit) precision, and the floating-point registers store values in this 
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Function I Page I Method 
combinel Abstract unoptimized 
combinel Abstract -02 

combine2 Move vec-length 
combine3 392 Direct data access 7 

Integer 
+ * 

42.06 41.86 
31.25 33.25 
20.66 21.25 
6.00 9.00 
2.00 4.00 
1.50 4.00 
1.06 4.00 
1.50 2.00 
1.50 2.00 
1.25 1.25 
39.7 33.5 

394 
409 

416 

Floating point 
+ * 

41.44 160.00 
31.25 143.00 
21.15 135.00 
8.00 117.00 
3.00 5.00 
3.00 5.00 
3.00 5.00 
2.00 2.50 
1.50 2.50 
1.50 2.00 
27.6 80.0 

Accumulate in temporary 
Unroll x 4  
Unroll x16 
Unroll x2, parallelism x2  

Figure 5.27 Comparative result for all combining routines. The best performing version is shown in boldface. 

Unroll x4, parallelism x2 
i Unroll ~ 8 .  oarallelism x 4  

format. Only when the value in a register is written to memory is it converted to 
32-bit (float) or 64-bit (double) format. 

Examining the data used for our measurements, the source of the problem 
becomes clear. The measurements were performed on a vector of length 1024 
having each element i equal to i + 1. ~ e n c e ,  we are attempting to compute 1024!, 
which is approximately 5.4 x Such a large number can be represented in the 
extended-precision floating-point format (it can represent numbers up to around 

but it far exceeds what can be represented as a single precision (up to 
around 1e8) or double precision (up to around 10308). The single precision case 
overflows when we reach i = 34, while the double precision case overflows when 
we reach i = 171. Once we reach this point, every execution of the statement 

f d e s t  = *dest OPER va l ;  

in the inner loop of combine3 requires reading the value +co, from des t, multi- 
plying this by val to get tco and then storing this back at dest. Evidently, some 
part of this computation requires much longer than the normal five clock cycles 
required by floating-point multiplication. In fact, running measurements on this 
operation, we find that it takes between 110 and 120 cycles to multiply a number 
by infinity. Most likely, the hardware detected this as a special case and issued 
a trap, which caused a software routine to perform the actual computation. The 
CPU designers felt that such an occurrence would be sufficiently rare that they 
did not need to deal with it as part of the hardware design. Similar behavior could 
happen with underflow. 

When we run the benchmarks on data for which every vector element equals 
1.0, combine3 achieves a CPEof 10.00cycles for both double and single precision. 
This is much more in line with the times measured for the other data types and 
operations, and comparable to the time for combine4. 
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Function --pF 1 Method 

Abstract unoptimized 
Abstract -02 
Move vec-length 
Direct data access 
Accumulate in temporary 
Unroll x4 
Unroll x16 
Unroll x4, parallelism x2  
Unroll x8, parallelism x4 

Inteeer Floating point ] 

1 Unroll x8, parallelism x8 1 1.11 4.24 1 2.36 2.08 
Worst:best 1 36.2 11.4 ( 22.3 26.7 

Figure 5.28 Comparative result for all combining routines running on a Compaq Alpha 
21164 processor. The same general optimization techniques are useful on this machine as 
well. 

This example illustrates one of the challenges of evaluating program perfor- 
mance. Measurements can be strongly affected by characteristics of the data and 
operating conditions that initially seem insignificant. 

5.1 1.2 Changing Platforms 

Although we presented our optimization strategies in the context of a specific 
machine and compiler, the general principles also apply to other machine and 
compiler combinations. Of course, the optimal strategy may be very machine de- 
pendent. As an example, Figure 5.28 shows performance results for a Compaq 
Alpha 21164 processor for conditions comparable to those for the Pentium 111 
shown in Figure 5.27. These measurements were taken for code generated by the 
Compaq C compiler, which applies more advanced optimizations than GCC. Ob- 
serve how the cycle times generally decline as we move down the table, just as they 
did for the other machine. We see that we can effectively exploit a higher (eight- 
way) degree of parallelism, because the Alpha has 32 integer and 32 floating-point 
registers. As this example illustrates, the general principles of program opt&za- 
tion apply to a variety of different'machines, even if the particular combination of 
features leading to optimum performance depend on the specific machine. 

5.12 Branch Prediction and Misprediction Penalties 

As we mentioned previously, modern processors work well ahead of the currently 
executing instructions, reading new instructions from memory, and decoding them 
to determine what operations to perform on what operands. This instruction 
pipelining works well as long as the instructions follow in a simple sequence. 
When a branch is encountered, however, the processor must guess which way the 
branch will go. For the case of a conditional jump, this means predicting whether 
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or not the branch will be taken. For an instruction such as an indirect jump (as 
we saw in the code to jump to an address specified by a jump table entry) or a 
procedure return, this means predicting the target address. In this discussion, we 
focus on conditional branches. 

In a processor that employs speculative execution, the processor begins exe- 
cuting the instructions at the predicted branch target. It does this in a way that 
avoids modifying any actual register or memory locations until the actual outcome 
has been determined. If the prediction is correct, the processor simply "commits" 
the results of the speculatively executed instructions by storing them in registers 
or memory. If the prediction is incorrect, the processor must discard all of the 
speculatively executed results, and restart the instruction fetch process at the cor- 
rect location. A significant branch penalty is incurred in doing thig because the 
instruction pipeline must be refilled before useful results are generated. 

Until recently, the technology required to support speculative execution was 
considered too costly and exotic for all but the most advanced supercomputers. 
Since around 1998, however, integrated circuit technology has made it possible to 
put so much circuitry on one chip that some can be dedicated to supporting branch 
prediction and speculative execution. At this point, almost every processor in a 
desktop or server machine supports speculative execution. 

In optimizing our combining procedure, we did not observe any performance 
limitation imposed by the loop structure. That is, it appeared that the only limiting 
factor to performance was due to the functional units. For this procedure, the 
processor was generally able to predict the direction of the branch at the end of 
the loop. In fact, if it predicted the branch will always be taken, the processor 
would be correct on all but the final iteration. 

Many schemes have been devised for predicting branches, and many studies 
have been conducted on their performance. A common heuristic is to predict that 
any branch to a lower address will be taken, while any branch to a higher address 
will not be taken. Branches to lower addresses are used to close loops, and since 
loops are usually executed many times, predicting these branches as being taken 
is generally a good idea. Forward branches, on the other hand, are used for condi- 
tional computation. Experiments have shown that the backward-taken, forward- 
not-taken heuristic is correct around 65% of the time. Predicting all branches as 
being taken, on the other hand, has a success rate of only around 60%. Far more 
sophisticated strategies have been devised, requiring greater amounts of hard- 
ware. For example, the IntelPentium I1 and111 processorsuse a branch prediction 
strategy that is claimed to be correct between 90% and 95% of the time [31]. 

We can run experiments to test the branch predication capability of a proces- 
sor and the cost of a misprediction. We use the absolute value routine shown in 
Figure 5.29 as our test case. This figure also shows the compiled form. For non- 
negative arguments, the branch will be taken to skip over the negation instruction. 
We time this function computing the absolute value of every element in an array, 
with the array consisting of various patterns of f l s  and -1s. For regular patterns 
(e.g., all fls, all -Is, or alternating f 1 and -Is), we find the function requires 
between 13.01 and 13.41 cycles. We use this as our estimate of the performance 
with perfect branch condition. On an array set to random patterns of +Is and 
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L 

3 
4 
5 

code/opi/absval.c 6 

1 int absval(int val) 7 

2 I 8 

3 return (val<O) ? -val : val; 9 

4 1 10 
11 

code/opi/absval.c 

absval : 
push1 %ebp 
movl %esp,%ebp 
movl 8 (%ebp) , %eax Get val 
test1 %eax,%eax Test it 

jge .L3 If >O, goto end 
negl %eax Else, negate it 

.L3:  end: 
movl %ebp, %esp 
pop1 %ebp 
ret 

(a) C code. (b) Assembly code. 

Figure 5.29 Absolute value code. We use this to measure the cost of branch misprediction. 

-Is, we find that the function requires 20.32 cycles. One principle of random 
processes is that no matter what strategy one uses to guess a sequence of values, if 
the underlying process is truly random, then we will be right only 50% of the time. 
For example, no matter what strategy one uses to guess the outcome of a coin 
toss, as long as the coin toss is fair, our probability of success is only 0.5. Thus, we 
can see that a mispredicted branch with this processor incurs a penalty of around 
14 clock cycles, since a misprediction rate of 50% causes the function to run an 
average of 7 cycles slower. This means that calls to absval require between 13 
and 27 cycles depending on the success of the branch predictor. 

This penalty of 14 cycles is quite large. For example, if our prediction accuracy 
were only 65%, then the processor would waste, on average, 14 x 0.35 = 4.9 cycles 
for every branch instruction. Even with the 90 to 95% prediction accuracy claimed 
for the Pentium I1 and 111, around one cycle is wasted for every branch due to 
mispredictions. Studies of actual programs show that branches constitute about 
15% of all executed instructions in typical "integer" programs (i.e., those that do 
not process numeric data), and around 3 to 12% of all executed instructions in 
typical numeric programs [33]. n u s ,  any wasted time due to inefficient branch 
handling can have a significant effect on processor performance. 

Many data dependent branches are not at all predictable. For example, there 
is no basis for guessing whether an argument to our absolute value routine will 
be positive or negative. To improve performance on code involving conditional 
evaluation, many processor designs have been extended to include conditional 
move instructions. These instructions allow some forms of conditionals to be 
implemented without any branch instructions. 

With the IA32 instruction set, a number of different crnov instructions were 
added starting with the PentiumPro. These instructions are supported by all recent 
Intel and Intel-compatible processors and perform an operation similar to the C 
code 

if (COND)  
x = y; 
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where y is the source operand and x is the destination operand. The condition 
COND determining whether the copy operation takes place is based on some 
combination of condition code values, similar to the test and conditional jump 
instructions. As an example, the cmovll instruction perfoms a copy when the 
condition codes indicate a value less than zero. Note that the first '1' of this 
instruction indicates "less," while the second is the GAS suffix for long word. 

The following assembly code shows how to implement absolute value with a 
conditional move: 

1 movl 8 (%ebp) ,%eax Get val as result 

2 movl %eax,%edx Copy to Be& 

3 negl %edx Negate Bedx 

4 test1 %eax,%eax Test val 
5 Conditionally move Be& to Beax 

6 cmovll %edx,%eax ~f < O, copy Be& to result 

As this code shows, the strategy is to set val as a return value, compute -val, 
and conditionally move it to register %eax to change the return value when val 
is negative. Our measurements of this code shows that it runs for 13.7 cycles 
regardless of the data patterns. 'This clearly yields better overall performance 
than a procedure that requires between 13 and 27 cycles. 

A friend of yours has written an optimizing compiler that makes use of condi- 
tional move instructions. You try compiling the following C code: 

1 / -  Dertference pointer or return 0 i f  null * /  
2 int deref(int *xp) 
3 ( 
4 return xp ? *xp : 0; 

1 The compiler generates the following code for the body of the procedure. 

1 movl8(%ebp),%edx Get xp 
2 movl (%edx) ,%eax Get *xp as result 
3 test1 %edx,%edx Test xp 

4 cmovll %edx,%eax If 0, copy 0 to result 

Explain why this code does not provide a valid implementation of deref 

The current version of GCC does not generate any code using conditional 
moves Due to a desire to remain compatible with earlier 486 and Pentium pro- 
cessors, the compiler does not take advantage of these new features. In our ex- 
periments, we used the handwritten assembly code shown above. A version using 
GCC'S facility to embed assembly code within a C program (Section 3.15) required 
17.1 cycles due to poorer quality code generation. 

Unfortunately, there is not much a C programmer can do to improve the 
branch performance of aprogram, except torecognize that data-dependent branches 
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incur a high cost in terms of performance. Beyond this, the programmer has little 
control over the detailed branch structure generated by the compiler, and it is 
hard to make branches more predictable. Ultimately, we must rely on a combina- 
tion of good code generation by the compiler to minimize the use of conditional 
branches, and effective branch prediction by the processor to reduce the number 
of branch mispredictions. 

5.1 3 Understanding Memory Performance 

All of the code we have written thus far, and all the tests we have run, require 
relatively small amounts of memory. For example, the combining routines were 
measured over vectors of length 1024, requiring no more than 8,096 bytes of data. 
All modern processors contain one or more cache memories to provide fast access 
to such small amounts of memory. All of the timings in Figure 5.12 assume that 
the data being read or written is contained in cache. In Chapter 6, we go into 
much more detail about how caches work and how to write code that makes best 
use of the cache. 

In this section, we will further investigate the performance of load and store 
operations while maintaining the assumption that the data being read or written 
are held in cache. As Figure 5.12 shows, both of these units have a latency of 3, and 
an issue time of 1. All of our programs so far have used only load operations, and 
they have had the property that the address of one load depended on incrementing 
some register, rather than as the result of another load. Thus, as shown in Fig- 
ures 5.15 to 5.18,5.21 and 5.26, the load operations could take advantage of pipelin- 
ing to initiate new load operations on every cycle. 'Ihe relatively long latency of 
the load operation has not had any adverse affect on program performance. 

5.1 3.1 Load Latency 

As an example of code whose performance is constrained by the latency of the load 
operation, consider the function l i s t - l en ,  shown in Figure 5.30. This function 
computes the length of a linked list. In the loop of this function, each succes- 

I sive value of variable i s  depends on the value read by the pointer reference 
Is->next. Our measurements show that function l i s t - l e n  has a CPE of 3.00, 
which we claim is a direct reflection of the latency of the load operation. To see 
this, consider the assembly code for the loop and the translation of its first iteration 
into operations: 

Assembly Instructions 1 Execution unit operations 
.L27: 

Each successive value of register %edx depends on the result of a load operation 
having %edx as an operand. Figure 5.31 shows the scheduling of operations for 

incl %eax 

movl i%edx),%edx 

test1 %edx,%edx 

jne .L27 

incl %eax.O + Beax.1 

load (Bedx.0) + Bedx.1 
test1 %edx.l,%edx.l + cc.1 

jne-taken cc . 1 
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1 typedef s t r u c t  ELE ( 

2 s t r u c t  ELE *next; 
3 i n t  data;  
4 ) l i s t - e l e ,  * l i s t g t r ;  
5 

6 i n t  l i s t - l e n ( 1 i s t g t r  i s )  
7 ( 
8 i n t  l en  = 0; 
9 
10 f o r  ( ;  I s ;  I s  = Is->next) 
11 len++; 
1 2  re turn  len;  
13 ) 

coddop t4ist.c 

Figure 5.30 Linked list functions. These illustrate the latency of the load operation. 

Iteration 3 

Figure 5.31 Scheduling of operations for list length function. The latency of the load 
operation limitr the CPE to a minimum of 3.0. 
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the first three iterations of this function. As can be seen, the latency of the load 
operation limits the CPE to 3.0. 

5.13.2 Store Latency 

In all of our examples thus far, we have interacted with the memory only by using 
the load operation to read from a memory location into a register. Its counterpart, 
the store operation, writes a register value to memory. As Figure 5.12 indicates, 
this operation also has a nominal latency of three cycles, and an issue time of 
one cycle. However, its behavior and its interactions with load operations involve 
several subtle issues. 

As with the load operation, in most cases, the store operation can operate in a 
fully pipelined mode, beginning a new store on every cycle. For example, consider 
the functions shown in Figure 5.32 that set the elements of an array des t of length 
n to zero. Our measurements for the first version show a CPE of 2.00. Since each 
iteration requires a store operation, it is clear that the processor can begim a new 

coddoptlcopy.c 

1 / *  Set element of array to 0 * /  
2 void array-clear(int *src, int *dest, int n) 
3 ( 
4 int i; 
5 
6 for (i = 0; i < n; it+) 
7 dest[il = 0; 
8 I 
9 

10 I *  Set elements of array to 0, unrolling by 8 * I  
11 void array-clear-glint *src, int *dest, int n) 
12 { 
13 int i; 
14 int len = n - 7; 
15 

16 for (i = 0; i < len; i+=8) { 
17 dest[il = 0; 
18 dest[i+ll = 0; 
19 dest[i+Zl = 0; 
20 dest[i+31 = 0; 
2 1 destiit41 = 0; 
22 destrit51 = 0; 
2 3 dest[i+61 = 0; 
2 4 destLit71 = 0; 
2 5 I 
26 for ( ;  i < n; it+) 
27 dest[il = 0; 
28 I 

coddoptlcopy.c 

Figure 5.32 Functions to clear array. These illustrate the pipelining of the store operation. 
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store operation at least once every 2 cycles. To probe further, we try unrolling 
the loop eight times, as shown in the code for array-clear-8. For this one, we 
measure a CPE of 1.25. That is, eachiteration requires around 10 cycles and issues 
eight store operations. Thus, we have nearly achieved the optimum limit of one 
new store operation per cycle. 

Unlike the other operations we have considered so far, the store operation 
does not affect any register values. Thus, by their very nature a series of store op- 
erations must be independent from each other. In fact, only a load operation is af- 
fectedby the result of a store operation, since only aload can read back thememory 
location that has been written by the store. The function write-read shown in 
Figure 5.33 illustrates the potential interactions between loads and stores. This fig- 
ure also shows two example executions of this function, when it is called for a two- 
element array a, with initial contents -10 and 17, and with argument cn t  equal 
to 3. These executions illustrate some subtleties of the load and store operations. 

1 / *  Write to desr, read from src * /  
2 void write-read(int *src, int *dest, int n) 
3 { 
4 int cnt = n; 
5 int val = 0; 
6 

7 while (cnt--) { 
8 'dest = val; 
9 val = (*src) +I;  
10 1 
11 1 

Example A: wrlte-read(ha[Ol, ha[:], 3 )  

cnt 

val 

Example 6: write_read(&a [OI .ha LO1 . 3 )  

I Initial I ( Her. 1 I ( Iter. 2 1 ( Iter. 3 I 
cn: iel 
val 

Figure 5.33 Code to write and read memory locations, along with illustrative 
executions. This function highlights the interactions between stores and loads when 
arguments src and dest are equal. 
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In example A of Figure 5.33, argument src is a pointer to array element 
a [ 0 I ,  while dest is a pointer to array element a [ 1 I .  In this case, each load by 
the pointer reference *src will yield the value -10. Hence, after two iterations, 
the array elements will remain h e d  at -10 and -9, respectively. The result of 
the read from src is not affected by the write to dest. Measuring this example 
over a larger number of iterations gives a CPE of 2.00. 

In example B of Figure 5.33(a), both arguments src and dest are pointers 
to array element a [ 0 I .  In this case, each load by the pointer reference *src 
will yield the value stored by the previous execution of the pointer reference 
*dest. As a consequence, a series of ascending values will be stored in this 
location. In general, if function write-read is called with arguments src and 
des t pointing to the same memory location, and with argument cnt having some 
value n > 0, the net effect is to set the location to n - 1. This example illustrates a 
phenomenon we will call writdread dependency-the outcome of a memory read 
depends on a very recent memory write. Our performance measurements show 
that example B has a CPE of 6.00. The writelread dependency causes a slowdown 
in the processing. 

To see how the processor can distinguish between these two cases and why 
one runs slower than the other, we must take a more detailed look at the load 
and store execution units, as shown in Figure 5.34. The store unit contains a 
store buffer containing the addresses and data of the store operations that have 
been issued to the store unit, but have not yet been completed, where completion 
involves updating the data cache. This buffer is provided so that a series of store 
operations can be executed without having to wait for each one to update the 
cache. When a load operation occurs, it must check the entries in the store buffer 
for matching addresses. If it finds a match, it retrieves the corresponding data 
entry as the result of the load operation. 

Figure 5.34 Detail of load and store units. The store 
unit maintains a buffer of pending writes. The \oad 
unit must check its address with those in the store unit 
to detect a writelread dependency. 
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The assembly code for the inner loop and its translation into operations during 
the first iteration is as follows: 

~ t r u c t i o n s  I Execution unit operations 
.L32:  

movl %edx, (%ecx) 

movl (%ebx) , %edx 
incl %edx 
decl %eax 
inc .L32 

storeaddr (%ecx) 
storedata %edx.O 
load (%ebx) + %edx. la 
incl %edx.la + %edx.lb 
decl Seax.0 + %eax. 1 
inc-taken cc.1 

Observe that the instruction movl %edx, (%ecx) is translated into two opera- 
tions: The storeaddr instruction computes the address for the store operation, 
creates an entry in the store buffer, and sets the address field for that entry. The 
storedata instruction sets the data field for the entry. Since there is only one 
store unit, and store operations are processed in program order, there is no arnbi- 
guity about how the two operations match up. As we will see, the fact that these 
two computations are performed independently can be important to program 
performance. 

Figure 5.35 shows the timing of the operations for the first two iterations 
of write-read for the case of example A. As indicated by the dotted line be- 
tween the storeaddr and load operations, the storeaddr operation creates 
an entry in the store buffer, which is then checked by the load. Since these 
are unequal, the load proceeds to read the data from the cache. Even though 
the store operation has not been completed, the processor can detect that it will 

Iteration 2 

Figure 5.35 Timing of writelead for example A. The store and load operations have different 
addresses, and so the load can proceed without waiting for the store. 
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affect a different memory location than the load is trying to read. This process 
is repeated on the second iteration as well. Here we can see that the store- 
data operation must wait until the result from the previous iteration has been 
loaded and incremented. Long before this, the storeaddr operation and the 
load operations can match up their addresses, determine they are different, and 
allow the load to proceed. In our computation graph, we show the load for the 
second iteration beginning just 1 cycle after the load from the first. If contin- 
ued for more iterations, we would find the graph indicates a CPE of 1.0. Evi- 
dently, some other resource constraint limits the actual performance to a CPE 
of 2.0. 

Figure 5.36 shows the timing of the operations for the first two iterations 
of write-read for the case of example B. Again, the dotted line between the 
storeaddr and load operations indicates that the storeaddr operation cre- 
ates an entry in the store buffer which is then checked by the load. Since these 
are equal, the load must wait until the storedata operation has completed, and 
then it gets the data from the store buffer. 'This waiting is indicated in the graph 
by a much more elongated box for the load operation. In addition, we show a 

a 6 - o "------ 
Iteration 1 

Iteration 2 

Figure 5.36 Timing of write-read for example B. The store and load operations have the same ad- 
dress, and hence the load must wait until it can get the result from the store. 
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dashed arrow from the storedata to the load operations to indicate that the 
result of the storedata is passed to the load as its result. Our timings of these 
operations are drawn to reflect the measured CPE of 6.0. Exactly how this timing 
arises is not totally clear, however, and so these figures are intended to be more 
illustrative than factual. In general, the processorlmemory interface is one of the 
most complex portions of a processor design. Without access to detailed docu- 
mentation and machine analysis tools, we can only give a hypothetical description 
of the actual behavior. 

As these two examples show, the implementation of memory operations in- 
volves many subtleties. With operations on registers, the processor can determine 
which instructions will affect which others as they are being decoded into opera- 
tions. With memory operations, on the other hand, the processor cannot predict 
which will affect which others until the load and store addresses have been com- 
puted. Since memory operations make up a signiiicant fraction of the program, the 
memory subsystem is optimized to run with greater parallelism for independent 
memory operations. 

As another example of wde with potential load-store interactions, consider the 
following function to copy the contents of one array to another: 

1 void copy-array(int *src, int *dest, int n) 
2 ( 
3 int i; 
4 

5 for (i = 0; i < n; it+) 
6 dest[il = src[il; 
7: 1 

Suppose a is an array of length 1000 initialized so that each element a [ i ] 
equals i . 

( A. What would be the effect of the call copy-array ( a t l ,  a ,  9 9 9 )  ? 

( B. What would be the effect of the call copy-array ( a ,  a t l ,  9 9 9 )  ? 

C. Our performance measurements indicate that the call of part A has a CPE 
of 3.00, while the call of part B has a CPE of 5.00. To what factor do you 
attribute this performance difference? 1 D. What performancewould you expect for thecall copy-array (a ,  a ,  999  ) ? 

5.14 Life in the Real World: Performance Improvement 
Techniques 

Although we have only considered a limited set of applications, we can draw 
important lessons on how to write efficient code. We have described a number of 
basic strategies for optimizing program performance: 
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1. High-level design. Choose appropriate algorithms and data structures for the 
problem at hand. Be especially vigilant to avoid algorithms or coding tech- 
niques that yield asymptotically poor performance. 

2. Basic codingprinciples. Avoid optimization blockers so that a compiler can 
generate efficient code. 

Eliminate excessive function calls. Move computations out of loops when 
possible. Consider selective compromises of program modularity to gain 
greater efficiency. 

a Eliminate unnecessary memory references. Introduce temporary vari- 
ables to hold intermediate results. Store a result in an array or global 
variable only when the final value has been computed. 

3. Low-level optimizations. 

Try various forms of pointer versus array code. 
a Reduce loop overhead by unrolling loops. /. a . . 

Find ways to make use of the pipelined functional units by techniques .. . 
, .  , 

such as iteration splitting. ... 3 ' , ,  i . 

A final word of advice to the reader is to be careful to avoid expending effort 
on misleading results. One useful technique is to use checking code to test each 
version of the code as it is being optimized to make sure no bugs are introduced 
during this process. Checking code applies a series of tests to the programand 
makes sure it obtains the desired results. It is very easy to make mistakes wheI;'ahe 
is introducing new variables, changing loop bounds, and makin'$ the code &re 
complex overall. In addition, it is important to notice any unusual or unexpe~fed 
changes in performance. As we have shown, the selection of the b e n c h w k  
data can make a big difference in performance comparisons dueto perfor&ibce 
anomalies, and because we are only executing short instruction sequences. 

5.15 ldentifying and Eliminating Performance Bottlenecks 

Up to this point, we have only considered optimizing small programs, where there 
is some clear place in the program that requires optimization. When working 
with large programs, even knowing where to focus our optimizations efforts can 
be diicult. In this section, we describe how to use code profilers, analysis tools 
that collect performance data about a program as it executes. We also present a 
general principle of system optimization known as Amdahl's law. 

5.15.1 Program Profiling 

Program profiling involves running a version of a program in which instrurnenta- 
tion code has been incorporated to determine how much time the different parts 
of the program require. It can be very useful for identifying the parts of a program 
we should focus on in our optimization efforts. One strength of profiling is that it 
can be performed while running the actual program on realistic benchmark data. 
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Unix systems provide the profiling program GPROF. This program generates 
two forms of information. First, it determines how much CPU time was spent 
for each of the functions in the program. Second, it computes a count of how 
many times each function gets called, categorized by which function performs the 
call. Both forms of information can be quite useful. The timings give a sense of 
the relative importance of the different functions in determining the overall run 
time. The calling information allows us to understand the dynamic behavior of 
the program. 

Profiling with GPROF requires three steps, as shown for a C program, prog . C, 
which runs with the command line argument file . t x t :  

1. The program must be compiled and linked for profiling. With GCC (and other 
C compilers) this involves simply including the run-time flag '-pg' on the com- 
mand line: 

unix> gcc -02 -pg pr0g.c -0 proy 

2. The program is then executed as usual: 

unix> . /pro9 file. txt 

It runs slightly (up to a factor of two) slower than normal, but otherwise the 
only difference is that it generates a file w o n .  out. 

3. GPROF is invoked to analyze the data in gmon. out. 

unix> gprof prog 

The first part of the profile report lists the times spent executing the different 
functions, sorted in descending order. As an example, the following listing shows 
this part of the report for the first three functions in a program: 

% cumulative self self total 

time seconds seconds calls ms/call ms/call name 
8 5 . 6 2  7 . 8 0  7 . 8 0  1 7 8 0 0 . 0 0  7 8 0 0 . 0 0  sort-words 

6 . 5 9  8 . 4 0  0 . 6 0  946596  0 .00  0 . 0 0  find-ele-rec 
4.50  8.81 0.41 946596  0 . 0 0  0 .00  lower1 

Each row represents the time spent for all calls to some function. The first column 
indicates the percentage of the overall time spent on the function. The second 
shows the cumulative time spent by the functions up to and including the one on 
this row. The third shows the time spent on this particular function, and the fourth 
shows how many times it was called (not counting recursive calls). In our example, 
the function sort-words was called only once, but this single call required 7.80 
seconds, while the function lowerl was called 946,596 times, requiring a total of 
0.41 seconds. 
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The second part of the profile report shows the calling history of the function. 
The following is the history for a recursive function f ind-ele-rec: 

4872758 f i n d - e l e - r e c  [ 5 ]  
0 . 6 0  0 . 0 1  946596/946596 i n s e r t - s t r i n g  [ 4 ]  

[ 51  6 . 7  0 .60  0 . 0 1  946596+4872758 f i n d - e l e - r e c  [5 ]  
0 . 0 0  0 . 0 1  26946/26946 s a v e - s t r i n g  [ 9 ]  
0 . 0 0  0 .00  26946126946 new-ele [ I l l  

4872758 f i nd -e l e - r ec  [ 5 ]  

?his history shows both the functions that called f ind-ele-rec, as well as the 
functions that it called. In the upper part, we find that the function was actu- 
ally called 5,819,354 times (shown as " 9 4  65 96+4872 7 5  8")--4,872,758 times by 
itself, and 946,596 times by function in se r t - s t r i ng  (which itself was called 
946,596 times). Function find-ele-rec in turn called two other functions: 
s a v e - s t r i n g  and n e w - e l e ,  each a total of 26,946 times. 

From this calling information, we can often infer useful information about 
the program behavior. For example, the function f ind-ele-rec is a recursive 
procedure that scans a linked list looking for a particular string. Given that the 
ratio of recursive to top-level calls was 5.15, we can infer that it required scanning 
an average of around six elements each time. 

Some properties of GPROF are worth noting: 

The timing is not very precise. It is based on a simple interval counting 
scheme, as will be discussed in Chapter 9. In brief, the compiled program 
maintains a counter for each function recording the time spent executing 
that function. The operating system causes the program to be interrupted at 
some regular time interval 6. Typical values of S range between 1.0 and 10.0 
milliseconds. It then determines what function the program was executing 
when the interrupt occurs and increments the counter for that function by 
6. Of course, it may happen that this function just started executing and will 
shortly be completed, but it is assigned the full cost of the execution since 
the previous interrupt. Some other function may run between two interrupts 
and therefore not be charged any time at all. 

Over a long duration, this scheme works reasonably well. Statistically, 
every function should be charged according to the relative time spent exe- 
cuting it. For programs that run for less than around one second, however, 
the numbers should be viewed as only rough estimates. 
The calling information is quite reliable. The compiled program maintains a 
counter for each combination of caller and callee. The appropriate counter 
is incremented every time a procedure is called. 
By default, the timings for library functions are not shown. Instead, these 
times are incorporated into the times for the calling functions 

5.15.2 Using a Profiler to Guide Optimization 

As an example of using a profiler to guide program optimization, we created an 
application that involves several different tasks and data structures. This applica- 
tion reads a text file, creates a table of unique words and how many times each 
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word occurs, and then sorts the words in descending order of occurrence. As a 
benchmark, we ran it on a file consisting of the complete works of Wdliam Shake- 
speare. From this, we determined that Shakespeare wrote a total of 946,596 words, 
of which 26,946 are unique. The most common word was "the," occurring 29,801 
times. The word "love" occurs 2249 times, while "death occurs 933 times. 

Our program consists of the following parts. We created a series of versions, 
starting with simple algorithms for the different parts and then replacing them 
with more sophisticated ones: 

1. Each word is read from the file and converted to lowercase. Our initial version 
used the function lower1 (Figure 5.7), which we know to have quadratic 
complexity. 

2. A hash function is applied to the string to create a number between 0 and s - 1, 
for a hash table with s buckets. Our initial function simply summed the ASCII 
codes for the characters modulo s. 

3. Each hash bucket is organized as a linked list. The program scans down this 
- ~ 

list looking for a matching entry. If one is found, the frequency for this word 
is incremented. Otherwise, a new list element is created. Our initial version 
performed this operation recursively, inserting new elements at the end of the 
list. 

4. Once the table has been generated, we sort all of the elements according to 
the frequencies. Our initial version used insertion sort. 

Figure 5.37 shows thepro6le results for different versions of our word-frequency 
analysis program. For each version, we divide the time into five categories: 

Sort: Sorting the words by frequency. 

List: Scanning the linked list for a matching word, inserting a new element if 
necessary. 

Lower: Converting the string to lower case. 

Hash: Computing the hash function. 

Rest: The sum of all other functions. 

As part (a) of the figure shows, our initial version requires over 9 seconds, with 
most of the time spent sorting. This is not surprising, since insertion sort has 
quadratic complexity, and the program sorted nearly 27,000 values. 

In our next version, we performed sorting using the library function q s o r t ,  
which is based on the quicksort algorithm. This version is labeled "Quicksort" in 
the figure. The more efficient sorting algorithm reduces the time spent sorting to 
become negligible, and the overall run time to around 1.2 seconds. Part (b) of the 
figure shows the times for the remaining version on a scale where we can see them 
better. 

With improved sorting, we now find that list scanning becomes the bottleneck. 
Thinking that the inefficiency is due to the recursive structure of the function, we 
replaced it by an iterative one, shown as "Iter First." Surprisingly, the run time 
increases to around 1.8 seconds. On closer study, we find a subtle difference 
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ure 5.37 Profile resultsfor different version of word frequency counting program. Time is divided according to 
different major operations in the program. 

between the two list functions. The recursive version inserted new elements at 
the end of the list, while the iterative one inserted them at the front. To maximize 
performance, we want the most frequent words to occur near the beginnings of 
the lists. That way, the function will quickly locate the common cases. Assuming 
that words are spread uniformly throughout the document, we would expect the 
first occurrence of a frequent one to come before that of a less frequent one. 
By inserting new words at the end, the first function tended to order words in 
descending order of frequency, while the second function tended to do just the 
opposite. We therefore created a th'ud list scanning function that uses iteration, 
but inserts new elements at the end of this list. With this version, shown as "Iter 
Last," the time dropped to around 1.0 seconds, just slightly better than with the 
recursive version. 

Next, we consider the hash table structure. The initial version had only 1021 
buckets (typically, the number of buckets is chosen to be a prime number to 
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enhance the ability of the hash function to distribute keys uniformly among the 
buckets). For a table with 26,946 entries, this would imply an average load of 
2694611007 = 26.4. That explains why so much of the time is spent performing 
list operations-the searches involve testing a significant number of candidate 
words. It also explains why the performance is so sensitive to the list ordering. 
We then increased the number of buckets to 10,007, reducing the average load 
to 2.70. Oddly enough. however, our overall run time incrcascd to 1.11 seconds. 
The profile results indicate that this additional time was mostly spent with the 
lower-case conversion routine, although this is highly unlikely. Our run times are 
sufficiently short that we cannot expect very high accuracy with these timings. 

We hypothesized that the poor performance with a larger table was duc to 
a poor choice of hash function. Simply summing the character codes does not 
produce a very wide range of values and does not differentiate according to the 
ordering of the characters. For example, the words "god" and "dog" would hash 
to location 147 f 157 f 144 = 448, since they contain the same characters. The 
word "foe" would also hash to this location, since 146 + 157 + 145 = 448. We 
switched to a hash function that uses shift and EXCLUSNE-OR operations. With 
this version, shown as "Better Hash," the time drops to 0.84 seconds. A more 
systematic approach would be to study the distribution of keys among the buckets 
more carefully, making sure that it comes close to what one would expect if the 
hash function had a uniform output distribution. 

Finally, we have reduced the run time to the point where one half of the time 
is spent performing lowercase conversion. We have already seen that function 
lower1 has very poor performance, especially for long strings. The words in this 
document are short enough to avoid the disastrous consequences of quadratic per- 
formancc; thc longest word ("honorificabilitudinitatibus") is 27 characters long. 
Still, switching to lower2, shown as "Linear Lower" yields a significant perfor- 
mance, with the ovcrall time dropping to 0.52 seconds. 

- -  ~ 

With this exercise, we have shown that code profiling can help drop the time 
required for a simple application from 9.11 seconds down to 0.52-a factor of 
17.5 improvement. The profiler helps us focus our attention on the most time- 
consuming parts of the program and also provides useful information about the 
procedure call structure. 

We can see that profiling is a useful tool to have in the toolbox, but it should not 
be the only one. The timing measurements are imperfect, especially for shorter 
(less than one second) run times. The results apply only to the particular data 
tested. For example, if we had run the original function on data consisting of a 
smaller number of longer strings, we would have found that the lowercase conver- 
sion routine was the major performance bottleneck. Even worse, if it only profiled 
documents with short words, we might never detect hidden performance killers 
such as the quadratic performance of lowerl .  In general, profiling can help us 
optimize for typical cases, assuming we run the program on representative data, 
but we should also make sure the program will have respectable performance for 
all possible cases. This is mainly involves avoiding algorithms (such as insertion 
sort) and bad programmingpractices (such as lower l )  that yield poor asymptotic 
performance. 
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5.15.3 Arndahl's Law 

Gene Amdahl, one of the early pioneers in computing, made a simple, but in- 
sightful observation about the effectiveness of improving the performance of one 
part of a system. This observation has come to be known as Amdahl's law. The 
main idea is that when we speed up one part of a system, the effect on the overall 
system performance depends on both how significant this part was and how much 
it sped up. Consider a system in which executing some application requires time 
Told. Suppose some part of the system requires a fraction a of this time, and that 
we improve its performance by a factor of k .  That is, the component originally 
required time aTold, and it now requires time (aTord)/k .  The overall execution 
time would thus be 

From this, we can compute the speedup S = Told/ Tnew as 

As an example, consider the case where a part of the system that initially 
consumed 60% of the time ( a  = 0.6) is sped up by a factor of 3 (k  = 3) .  Then we 
get a speedup of 1/[0.4 + 0.6/3] = 1.67. Thus, even though we made a substantial 
improvement to a major part of the system, our net speedup was significantly less. 
This is the major insight of Amdahl's law-to significantly speed up the entire 
system, we must improve the speed of a very large fraction of the overall system. 

Suppose you work as a truck driver, and you have been hired to carry a load of 
potatoes from Boise, Idaho to Minneapolis, Minnesota, a total distance of 2500 
kilometers. You estimate you can average 100 k~nlhr driving within the speed 
limits, requuing a total of 25 hours for the trip. 

A. You hear on the news that Montana has just abolished its speed limit, which 
constitutes 1500 km of the trip. Your truck can travel at 150 kmlhr. What 
will be your speedup for the trip? 

B. You can buy anew turbocharger for your truck atwww. f asttrucks . corn. 
They stock a variety of models, but the faster you want to go, the more it 
WIU cost. How fast must you travel through Montana to get an overall 
speedup for your trip of 5/3? 
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The marketing department at your company has promised your customers that 
the next software release will show a 2X performance improvement. You have 
been assigned the task of delivering on that promise. You have determined that 
only 80% of the system can be improved. How much (i.e., what value of k )  
would you need to improve this part to meet the overall performance target? 

One interesting special case of Amdahl's law is toconsider the effect of setting 
k to a. That is, we are able to take some part of the system and speed it up to 
the point at which it takes a negligible amount of time. We then get 

So, for example, if we can speed up 60% of the system to the point where it 
requires close to no time, our net speedup will still only be 110.4 = 2.5. We saw 
this performance with our dictionary program as we replaced insertion sort by 
quicksort. The initialversion spent 7.8 of its 9.1 seconds performing insertion sort, 
giving (Y = .86. With quicksort, the time spent sorting becomes negligible, giving a 
predicted speedup of 7.1. In fact, the actual speedup was higher: 9.11J1.22 = 7.5, 
due to inaccuracies in the profiling measurements for the initial version. We were 
able to gain a large speedup because sorting constituted a very large fraction of 
the overall execution time. 

Amdahl's law describes a general principle for improving any process. In 
addition to applying to speeding up computer systems, it can guide a company 
trying to reduce the cost of manufacturing razor blades, or to a student trying to 
improve his or her gradepoint average. Perhaps it is most meaningful in the world 
of computers, where we routinely improve performance by factors of two or more. 
Such high factors can only be obtained by optimizing a large part of the system. 

5.16 Summary 

Although most presentations on code optimization describe how compilers can 
generate efficient code, much can be done by an application programmer to assist 
the compiler in this task. No compiler can replace an inefficient algorithm or 
data structure by a good oae, and so these aspects of program design should 
remain a primary concern for programmers. We also have seen that optimization 
blockers, such as memory aliasing and procedure calls, seriously restrict the ability 
of compilers to perform extensive optimizations. Again, the programmer must 
take primary responsibility for eliminating these. 

Beyond this, we have studied a series of techniques, including loop unrolling, 
iteration splitting, and pointer arithmetic. As we get deeper into the optimization, 
it becomes important to study the generated assembly code, and to try to under- 
stand how the computation is being performed by the machine. For execution 
on a modern, out-of-order processor, much can be gained by analyzing how the 



Chapter 5 Homework Problems 445 

program would execute on a machine with unlimited processing resources, but 
where the latencies and the issue times of the functional units match those of the 
target processor. To refine this analysis, we should also consider such resource 
constraints as the number and types of functional units. 

Programs that involve conditional branches or complex interactions with the 
memory system are more difficult to analyze and optimize than the simple loop 
programs we first considered. The basic strategy is to try to make loops more 
predictable and to try to reduce interactions between store and load operations. 

When working with large programs, it becomes important to focus our op- 
timization efforts on the parts that consume the most time. Code profilers and 
related tools can help us systematically evaluate and improve program perfor- 
mance. We described GPROF, a standard Unix profiling tool. More sophisticated 
profilers are available, such as the VTUNE program development system from In- 
tel. These tools can break down the execution time below the procedure level, 
to measure performance of each basic block of the program. A basic block is a 
sequence of instructions with no conditional operations. 

Amdahl's law provides a simple but powerful insight into the performance 
gains obtained by improving just one part of the system. The gain depends both 
on how much we improve this part and how large a fraction of the overall time 
this part originally required. 

Bibliographic Notes 

Many books have been written about compiler optimization techniques. Much- 
nick's book is considered the most comprehensive 1551. Wadleigh and Crawford's 
book on software optimization [85] covers some of the inaterialie have presented, 
but it also describes the process of getting high performance on parallel machines. 

Our presentation of the operation of an out-of-order processor is fairly brief 
and abstract. More complete descriptions of the general principles can be found 
in advanced computer architecture textbooks, such as the one by Hennessy and 
Patterson [33, Ch. 31. Shriver and Smith give a detailed presentation of an AMD 
processor [69] that bears many similarities to the one we have described. 

Amdahl's law is presented in most books on computer architecture. With its 
major focus on quantitative system evaluation, Hennessy and Patterson's book 
[33] provides a particularly good treatment of the subject. 

Homework Problems 

5.11 ** 
Suppose we wish to write a procedure that computes the inner product of two 
vectors. An abstract version of the function has a CPE of 54 for both integer and 
floating-point data. By doing the same sort of transformations we did to transform 
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the abstract program combinel into the more efficient combine4, we get the 
following code: 

1 /t Accumulate i n  temporary * /  
2 void innerl(vecqtr u, vecqtr v, data-t *dest) 

3 
4 int i; 
5 int length = vec-length(u); 
6 data-t *udata = getyec-start(u); 
7 data-t *vdata = get-vet-start(v); 
8 data-t sum = (data-t) 0; 
9 

10 f o r  (i = 0; i < length; i + + l  { 

11 sum = sum + udata[il vdata[il; 
12 ) 
13 *dest = sum; 
14 1 

Our measurements show that this function requires 3.11 cycles per iteration for 
integer data. The assembly code for the inner loop is as follows: 

udata  i n  Besi, v d a t a  i n  %ebx, 

1 .L24: 
2 movl (%esi,%edx,4),%eax 

3 imull (%ebx, %edx, 4) , %eax 
4 add1 %eax,%ecx 
5 incl %edx 
6 cmpl %edi,%edx 
7 jl .L24 

i in %edx, sum i n  Becx, l e n g t h  i n  Bedi 

l oop :  

Get  u d a t a j i l  

Mu1 t i p l y  by v d a t a  [ i l  

Add t o  sum 
it+ 

Compare i : 1 e n g t h  

If <, got0 loop 

Assume that integer multiplication is performed by the general integer functional 
unit and that this unit is pipeliied. This means that one cycle after a multiplica- 
tion has started, a new integer operation (multiplication or otherwise) can begin. 
Assume also that the IntegerIBranch function unit can perform simple integer 
operations. 

A. Show a translation of these lines of assenlbly code into a sequence of opera- 
tions. The movl instruction translates into a single load operation. Register 
Beax gets updated twice in the loop. Label the different versions Beax. la 
and %eax. lb. 

B. Explain how the function can go faster than the number of cycles required for 
integer multiplication. 

C. Explain what factor limits the performance of this code to at best a CPE of 
2.5. 

D. For floating-point data, we get a CPE of 3.5. Without needing to examine the 
assembly code, describe a factor that will limit the performance to at best 3 
cycles per iteration. 
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5.12 + 
Write a version of the inner product procedure described in Problem 5.11 that 
uses four-way loop unrolling. 

Our measurements for this procedure give a CPE of 2.20 for integer data and 
3.50 for floating point. 

A. Explain why any version of any inner product procedure cannot achieve a 
CPE greater than 2. 

B. Explain why the performance for floating point did not improve with loop 
unrolling. 

5.13 + 
Write a version of the inner product procedure described in Problem 5.11 that 
uses four-way loop unrolling and two-way parallelism. 

Our measurements for this procedure give a CPE of 2.25 for floating-point 
data. Describe two factors that limit the performance to a CPE of at best 2.0. 

5.14 ++ 
You've just joineda programming team that is trying to develop the world's fastest 
factorial routine. Starting with recursive factorial, they've converted the code to 
use iteration: 

1 int fact(int n) 
2 i 
3 int i ;  
4 int result = 1; 
5 

6 for (i = n; i > 0; i--) 
7 result = result * i; 
8 return result; 
9 1 

By doing so, they have reduced the numberof CPE for the function from 63 to 4, 
measured on an Intel Pentium 111 (really!). Still, they would like to do better. 

One of the programmers heard about loop unrolling, and she generated the 
following code: 

1 int fact-u2 (int n )  
2 i 
3 int i; 
4 int result = 1; 
5 for ( i  = n; i > 0; i-=2) i 
6 result = (result * i) * (i-1) ; 
7 1 
8 return result; 
9 1 

Unfortunately, the team discovered that this code returns 0 for some values of 
argument n. 
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A. For what values of n will f act-u2 and fact return different values? 

B. Show how to fix f act_u2. Note that there is a special trick for this procedure 
that involves just changing a loop bound. 

C. Benchmarking f act-u2 shows no improvement in performance. How would 
you explain that? 

D. You modify the line inside the loop to read 

6 result = result * (i * (i  - 1)); 

To everyone's astonishment, the measured performance now has a CPE of 
2.5. How do you explain this performance improvement? 

5.15 + 
Using the conditional move instruction, write assembly code for the body of the 
following function: 

1 / *  Return maximum of x and y * /  
2 int max(int x, int y) 
3 ( I 
4 return (x < y )  ? y : x; 
5 ) 

I 
I 

5.16 +* 
Using conditional moves, the general technique for translating a statement of the 
form 

C1 & = c o n w p r  ? then-expr : eb-expr;  
i. 

is to generate code of the form 
* 

J. 2. 
pl = then2xpr; 3.. . $emp = else-expr; 
test = cond-expr; 
i,f (test) val = temp; 

. . 
wh$e the last lice is implemented with a conditional move instruction. Using the 
e ~ & ~ l e  of ~ract ice~roblem 5.7 as a guide, state the general requirements for this 
t rg~jat ion to bk valid. 

5.17 ++ 
The following function computes the sum of the elements in a linked list: 

1 int list-sum(1istqtr 1s) 
2 ( 
3 int sum = 0; 
4 
5 for ( ;  Is; Is = Is->next) 
6 sum += Is->data; 
7 return sum; 
8 1 
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The assembly code for the loop and the translation of the first iteration into oper- 
ations yield the following: 

A. Draw agraphshowingthe scheduling of operationsfor the first threeiterations 
of the loop in the style of Figure 5.31. Recall that there is just one load unit. 

Assembly Instructions 
. L43 : 
addl4(%edx),%eax 

movl (%edx) , %edx 
test1 %edx, %edx 
jne .L43 

B. Our measurements for this function give a CPE of 4.00. Is this consistent with 
the graph you drew in part A? 

Execution unit operations 

movl4(%edx.O) + t.1 
add1 t.l,%eax.O + %eax.l 
load (%edx.O) + %edx.l 
test1 %edx.l,%edx.l + cc.1 
jne-taken cc.1 

5.18 ++ 
'The following function is avariant on the list sum function shown in Problem5.17: 

1 int list-sumZ(1istqtr 1s) 
2 ( 
3 int sum = 0; 
4 listqtr old; 
5 

6 while (Is) ( 
7 old = Is; 
8 Is = Is->next; 
9 sum t= old->data; 
10 I 
11 return sum; 
12 1 

This code is written in such a way that the memory access to fetch the next list 
element comes before the one to retrieve the data field from the current element. 

'The assembly code for the loop and the translation of the first iteration h t o  
operations yield the following: 

Assembly Instructions 
. L48 : 
movl %edx, %ecx 
movl (%edx) , %edx 
add1 4(%ecx),%eax 

test1 %edx,%edx 
jne .L48 - 

Execution unit operations 

load (%edx.O) + %edx.l 
movl 4(%edx.O) + t.1 
add1 t.l,%eax.O + %eax.l 
test1 %edx.l,%edx.l + cc.1 
jne-taken cc.1 
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Note that the register move operation movl %edx, %ecx does not require any 
operations to implement. It is handled by simply associating the tag edx. 0 with 
register %ecx, so that the later instruction add1 4 (%ecx)  , %eax is translated to 
use edx .0 as its source operand. 

A. Draw agraphshowing theschedulingof operationsfor the firstthree iterations 
of the loop, in the style of Figure 5.31. Recall that there is just one load unit. 

B. Our measurements for this function give a CPE of 3.00. Is this consistent with 
the graph you drew in part A? 

C. How does this function make better use of the load unit than did the function 
of Problem 5.17? 

5.19 
Suppose you are given the task of improving the performance of a program con- 
sis;&g of 3 parts.-Part A requires 20% of the overall run time, part B requires 
30%, and part C requires 50%. You determine that for $1000 you could either 
speed up part B by a factor of 3.0 or part C by a factor of 1.5. Which choice would 
maximize performance? 

Solutions to Practice Problems 

Problem 5.1 Solution [Pg. 3801 
This problem illustrates some of the subtle effects of memory aliasing. 

As the following commented code shows, the effect will be to set the value at 
xp to zero: 

This example illustrates that our intuition about program behavior can often be 
wrong. We naturally think of the case where xp and y p  are distinct but overlook 
the possibility that they might be equal. Bugs often arise due to conditions the 
programmer does not anticipate. 

Problem 5.2 Solution [Pg. 3841 
This problem illustrates the relationship between CPE and absolute performance. 
It can be solved using elementary algebra. We find that for n 5 2, Version 1 is the 
fastest. Version 2 is fastest for 3 5 n 5 7, and Version 3 is fastest for n 2 8. 

Problem 5.3 Solution [Pg. 3911 
This is a simple exercise, but it is important to recognize that the four statements 
of a f o r  loop-initial, test, update, and body-get executed different numbers of 
times. 

Code 1 min 1 max 1 i n c r  1 square 

90 A. 1 1 91 1 90 
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Problem 5.4 Solution [Pg. 4151 
As we found in Chapter 3, reverse engineering from assembly code to C code 
provides useful insights into the compilation process. The following code shows 
the form for general data and general combining operation: 

1 void combine5px8(vecgtr v, data-t *dest) 

2 I 
3 int length = vec-length(v); 
4 int limit = length - 3; 
5 data-t *data = get-vec-start(v); 
6 data-t x = IDENT: 
7 int i; 
'a 
9 ;* Combine 8 elements at a rime * /  
10 for (i = 0; i < limit; i+=8) ( 
11 x = x OPER data[O] 
12 OPER data [l] 
13 OPER datal21 
1 4  OPER data131 
1 5  OPER data[4] 
16 OPER data[5] 
1 7  OPER data[6] 
18 OPER data [ 7 1 ;  
19 data += 8; 
20 1 
2 1 
22 I* Flnish any remaining elements * I  
2 3 for ( ;  i < length; i++) I 
24 x = x OPER datalo]; 
2 5 data++; 
26 1 
2 7 *dest = x; 
28 I 

Our handwritten pointer code is able to eliminate loop variable i by computing 
an ending value for the pointer. This is another example of how a well-trained 
human often can see transformations that are overlooked by the compiler. 

Problem 5.5 Solution [Pg. 4211 
Spilled values are generally stored in the local stack frame. Therefore, they have 
a negative offset relative to %ebp. We can see such a reference at line 12 in the 
assembly code. 

A. Variable 1 i m i t  has been spilled to the stack. 

B. It is at offset -8 relative to %ebp. 

C. This value is only required to determine whether the j 1 instruction closing 
the loop should be taken. If the branch prediction logic predicts the branch 
as taken, then the next iteration can proceed before the loop test has com- 
pleted. Therefore, the comparison instruction is not part of the critical path 
determining the loop performance. Furthermore, since this variable is not 
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altered within the loop, having it on the stack does not require any additional 
store operations. 

Problem 5.6 Solution [Pg. 4221 
This problem demonstrates how small changes in a program can yield dramatic 
perfimance differences, especially on a machine with out-of-order execution. 
Figure 5.38 diagrams the scheduling of multiplication operations for one iteration 
of the function for each of the associations. Each iteration involves three mul- 
tiplications, and each takes the old value of r (shown as r .  0) and computes a 
new value (show as r .I). As the solid blue l i e s  show, however, the criticalpath, 
that is, the minimum time between successive updates to r can be either 12 (Al), 
8 (A2 and A5) or 4 (A3 and A4). Assuming the processor achieves maximum 
parallelism, this critical path will provide the only limit on the theoretical CPE. 

This yields the following table entries: 

Figure 5.38 Scheduling of multiplication operations for cases in Problem 5.6. The blue lines show 
the critical paths constraining the times between successive updates of variable r. 
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We see from this table that associations Al, A2, and A5 achieve their theoretical 
optimum, while A3 and A4 take 5 cycles per iteration rather than the theoretically 
optimal 4. 

Problem 5.7 Solution [Pg. 4281 
This problem demonstrates the need to be careful when using conditional moves. 
They require evaluating a value for the source operand, even when this value is 
not used. 

This code always dereferences xp (instruction B2). This will cause a null 
pointer reference in the case where xp is zero. 

Problem 5.8 Solution [Pg. 4361 
This problem requires you to analyze the potential load-store interactions in a 
program. 

A. It will set each element a [ i ] to i + 1, for 0 5 i 5 998. 
B. It will set each element a [ i 1 to 0, for 1 5 i 5 999. 
C. In the second case, the load of one iteration depends on the result of the store 

from the previous iteration. n u s ,  there is a writelread dependency between 
successive iterations. 

D. It will give a CPE of 5.00, since there are no dependencies between stores and 
subsequent loads. 

Problem 5.9 Solution [Pg. 4431 
This problem illustrates that Amdahl's law applies to more than just computer 
systems. 

A. In terms of Equation 5.1, we have u = 0.6 and k = 1.5. More directly, 
traveling the 1500 kilometers through Montana will require 10 hours, and the 
rest of the trip also requires 10 hours. This will give a speedup of 25/(10+10) = 
1.25. 

B. In terms of Equation 5.1, we have a = 0.6, and we require S = 513, from 
which we can solve for k.  More directly, to speedup the trip by 513, we must 
decrease the overall time to 15 hours. The parts outside of Montana will still 
require 10 hours, so we must drive through Montana in 5 hours. This requires 
traveling at 300 km/hr, which is pretty fast for a truck! 

Problem 5.10 Solution [Pg. 4441 
Amdahl's Law is best understood by working through some examples. This one 
requires you to look at Equation 5.1 from an unusual perspective. 

This problem is a simple application of the equation. You are given S = 2 
and a = .8, and you must then solve fork: 




