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When programming in a high-level language such as C, we are shielded from the 
detailed, machine-level implementation of our program. In contrast, when writing 
programs in assembly code, a programmer must specify exactly how the program 
manages memory and the low-level instructions the program uses to cany out the 
computation. Most of the time, it is much more productive and reliable to work 
at the higher level of abstraction provided by a high-level language. The type 
checking provided by a compiler helps detect many program errors andmakes sure 
we reference and manipulate data in consistent ways With modern, optimizing 
compilers, the generated code is usually at least as efficient as what a skilled, 
assembly-language programmer would write by hand. Best of all, a program 
written in a high-level language can be compiled and executed on a number of 
diierent machines, whereas assembly code is highly machine specific. 

Even though optimizing compilers are available, being able to read and under- 
stand assembly code is an important skill for serious programmers. By invoking 
the compiler with appropriate flags, the compiler will generate a file showing its 
output in assembly code. Assembly code is very close to the actual machine code 
that computers execute. Its main feature is that it is in a more readable textual 
format, compared to the binary format of object code. By reading this assembly 
code, we can understand the optimization capabilities of the compiler and analyze 
the underlying inefficiencies in the code. As we will experience in Chapter 5, pro- . - 

grammers seeking to maximize the performance of a critical section ofcode often 
try different variations of the source code, each time compiling and examining 
the generated assembly code to get a sense of how efficiently the program wifl 
run. Furthermore, there are times when the layer of abstraction provided by a 
high-level language hides information about the run-time behavior of a program 
that we need to understand. For example, when writing concurrent programs 
using a thread package, as covered in Chapter 13, it is important to know what 
type of storage is used to hold the different program variables. This information 
is visible at the assembly code level. The need for programmers to learn assembly 
code has shifted over the years from one of being able to wite  programs directly 
in assembly to oneof being able to read and understand the code generated by 
optimizing compilers. 

In this chapter, we will learn the details of a particular assembly language 
and see how C programs get compiled into this form of machine code. Reading 
the assembly code generated by a compiler involves a different set of skills than 
writing assembly code by hand. We must understand the transformations typical 
compilers make in converting the constructs of C into machine code. Relative 
to the computations expressed in the C code, optimizing compilers can rearrange 
execution order, eliminate unneeded computations, replace slow operations such 
as multiplication by shifts and adds, and even change recursive computations into 
iterative ones. Understanding the relation between source code and the gen- 
erated assembly can often be a challenge-much like putting together a puzzle 
having a slightly different design than the picture on the box. It is a form of 
reverse engineering-trying to understand the process by which a system was cre- 
ated by studying the system and working backward. In this case, the system is a 
machine-generated, assembly-language program, rather than something designed 
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by a human. This simplifies the task of reverse engineering, because the gener- 
ated code follows fairly regular patterns, and we can run experiments, having the 
compiler generate code for many different programs. In our presentation, we give 
many examples and provide a number of exercises illustrating different aspects of 
assembly language and compilers. This is a subject matter where mastering the 
details is a prerequisite to understanding the deeper and more fundamental con- 
cepts. Spending time studying the examples and working through the exercises 
will be well worthwhile. 

We give a brief history of the Intel architecture. Intel processors have grown 
from rather primitive 16-bit processors in 1978 to the mainstream machines for 
today's desktop computers. The architecture has grown correspondingly with new 
features added and the 16-bit architecture transformed to support 32-bit data and 
addresses. The result is a rather peculiar design with features that make sense only 
when viewed from a historical perspective. It is also laden with features providing 
backward compatibility that are not used by modern compilers and operating 
systems. We will focus on the subset of the features used by GCC and Linux. This 
allows us to avoid much of the complexity and arcane features of 1.432. 

Our technical presentation starts a quick tour to show the relation between 
C, assembly code, and object code. We then proceed to the details of IA32, 
starting with the representation and manipulation of data and the implementation 
of control. We see how control constructs in C, such as if, while, and switch 
statements, are implemented. We then cover the implementation of procedures, 
including how the run-time stack supports the passing of data and control between 
procedures, as well as storage for local variables Next, we consider how data 
structures such as arrays, structures, and unions are implemented at the machine 
level. With this background in machine-level programming, we can examine the 
problems of out of bounds memory references and the vulnerability of systems to 
buffer overflow attacks. We finish this part of the presentation with some tips on 
usiig the GDB debugger for examining the run-time behavior of a machine-level 
program. 

We thenmove into material that is marked with an asterisk "*" andisintended 
for dedicated machine-language enthusiasts. We give a presentation of IA32 sup- 
port for floating-point code. This is a particularly arcane feature of IA32, and so 
we advise that only people determined to work with floating-point code attempt 
to study this section. We give a brief presentation of ~ c c ' s  support for embed- 
ding assembly code within C programs. In some applications, the programmer 
must drop down to assembly code to access low-level features of the machine. 
Embedded assembly is the best way to do this. 

3.1 A Historical Perspective 

The Intel processor line has a long, evolutionary development. It started with 
one of the first single-chip, 16-bit microprocessors, where many compromises had 
to be made due to the limited capabilities of integrated circuit technology at the 
time. Since then it has grown to take advantage of technology improvements as 
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well as to satisfy the demands for higher performance and for supporting more 
advanced operating systems 

The list that follows shows the successive models of Intel processors, and some 
of their key features. We use the number of transistors required to implement the 
processors as an indication of how they have evolved incomplexi ty~(~ denotes 
1000, and M denotes 1,000,000). 

8086: (1978,29 K transistors). One of the first single-chip, 16-bit microproces- 
sors. The 8088, a version of the 8086 with an 8-bit external bus, formed 
the heart of the original IBM personal computers. IBM contracted with 
then-tiny Microsoft to develop the MS-DOS operating system. ?he origi- 
nal models came with 32,768 bytes of memory and two floppy drives (no hard 
drive). Architecturally, the machines were limited to a 655,360-byte address 
space-addresses were only 20 bits long (1,048,576 bytes addressable), and 
the operating system reserved 393,216 bytes for its own use. 

80286: (1982,134 K transistors). Added more (and now obsolete) addressing 
modes. Formed the basis of the IBM PC-AT personal computer, the original 
platform for MS Windows. 

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added 
the flat addressing model used by Linux and recent versions of the Windows 
family of operating system. This was the first machine in the series that could 
support a Unix operating system. 

i486: (1989, 1.9 M transistors). Improved performance and integrated the 
floating-point unit onto the processor chip but did not change the instruc- 
tion set. 

Pentium: (1993, 3.1 M transistors). Improved performance, but only added 
minor extensions to the instruction set. 

PentiumPro: (1995, 6.5 M transistors). Introduced a radically new processor 
design, internally known as the P6 microarchitecture. Added a class of "con- 
ditional move" instructions to the instruction set. 

PentiumlMMX: (1997, 4.5 M transistors). Added new class of instructions to 
the Pentium processor for manipulating vectors of integers. Each datum can 
be 1,2, or 4-bytes long. Each vector totals 64 bits 

Pentium 11: (1997,7 M transistors). Merged the previously separate PentiumPro 
and P e n t i u W X  lines by implementing the MMX instructions within the 
P6 microarchitecture. 

Pentium IIk (1999,8.2 M transistors). Introduced yet another class of instruc- 
tions for manipulating vectors of integer or floating-point data. Each datum 
can be 1,2, or 4 bytes, packed into vectors of 128 bits. Later versions of this 
chip went up to 24 M transistors, due to the incorporation of the level-2 cache 
on chip. 

Pentium 4: (2001, 42 M transistors). Added 8-byte integer and floating-point 
formats to the vector instructions, along with 144 new instructions for these 
formats. Intel shifted away from Roman numerals in their numbering con- 
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Each successive processor has been designed to be backward compatible-able 
to run code compiled for any earlier version. As we will see, there are many 
strange artifacts in the instruction set due to this evolutionary heritage. Intel now 
calls its instruction set IA32, for "Intel Architecture 32-bit." The processor line 
is also referred to by the colloquial name "x86," reflecting the processor naming 
conventions up through the i486. 
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Similar exponential growth rates have occ 
memorychip capacities, and processor 
driving forces of the computer rwolut 

Over the years, several companies have produced processors that are compatible 
with Intel processors, capable of running the exact same machine-level programs. 
Chief among these is AMD. For years, AMD's strategy was to run just behind Intel 
in technology, producing processors that were less expensive although somewhat 
lower in performance. More recently, AMD has produced some of the highest 
performing processors for IA32. They were the first to the break the 1-gigahertz 
clock speed barrier for a commercially available microprocessor. Although we will 
talk about Intel processors, our presentation holds just as well for the compatible 
processors produced by Intel's rivals. 

Much of the complexity of IA32 is not of concern to those interested in pro- 
grams for the Linux operating system as generated by the GCC compiler. The 
memory model provided in the original 8086 and its extensions in the 80286 are 
obsolete. Instead, Linux uses what is referred to as flat addressing, where the 
entire memory space is viewed by the programmer as a large array of bytes. 

As we can see in the list of developments, a number of formats and instructions 
have been added to IA32 for manipulating vectors of small integers and floating- 
point numbers. These features were added to allow improved performance on 
multimedia applications, such as image processing, audio and video encoding and 
decoding, and three-dimensional computer graphics. Unfortunately, current ver- 
sions of GCC will not generate any code that uses these new features. In fact, in its 
default invocations GCC assumes it is generating code for an i386. The compiler 
makes no attempt to exploit the many extensions added to what is now considered 
a very old architecture. 

3.2 Program Encodings 

Suppose we write a C program as two files p l  . c and p2. c. We would then 
compile this code using a Unix command l i e :  

unix> gcc -02 -0 p p1.c  p2.c 

The command gcc indicates the GNU C compiler GCC. Since this is the default 
compiler on Linux, we could also invoke it as simply cc. The flag -02 instructs 
the compiler to apply level-two optimizations. In general, increasing the level 
of optimization makes the linal program run faster, but at a risk of increased - .  

compilation time and difficulties running debugging tools on the code. Level-two 
optimization is a good compromise between optimized performance and ease of 
use. All code in this book was compiled with this optimization level. 

This command actually invokes a sequence of programs to turn the source 
code into executable code. First, the Cpreprocessor expands the source code to 
include any files specified with #include commands and to expand any macros. 
Second, the compiler generates assembly code versions of the two source files 
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having names p l  . s and p2 . s. Next, the assembler converts the assembly code 
into binary object code files p l  . o and p2 . o. Finally, the linker merges these two 
object files along with code implementing standard Unix library functions (e.g., 
p r i n t f )  and generates the h a 1  executable file. Linking is described in more 
detail in Chapter 7. 

3.2.1 Machine-Level Code 

The compiler does most of the work in the overall compilation sequence, trans- 
forming programs expressed in the relatively abstract execution model provided 
by C into the very elementary instructions that the processor executes. The as- 
sembly code-representation is very close to machine code. Its main feature is that 
it is in a more readable textual format, as compared to the binary format of object 
code. Being able to understand assembly code and how it relates to the original 
C code is a key step in understanding how computers execute programs. 

The assembly programmer's view of the machine differs significantly from 
that of a C programmer. Parts of the processor state are visible that normally are 
hidden from the C programmer: 

The program counter (called %e ip )  indicates the address in memory of the 
next instruction to be executed. 
The integer register file contains eight named locations storing 32-bit values. 
These registers can hold addresses (corresponding to C pointers) or integer 
data. Some registers are used to keep track of critical parts of the program 
state, while others are used to hold temporary data, such as the localvariables 
of a procedure. 
The condition code registers hold status information about the most recently 
executed arithmetic instruction. These are used to implement conditional 
changes in the control flow, such as is required to implement i f  or whi le  
statements. 

a The floating-point register file contains eight locations for storing floating- 
point data. 

Whereas C provides a model in which objects of different data types can be de- 
clared and allocated in memory, assembly code views the memory as simply a 
large, byte-addressable array. Aggregate data types in C such as arrays and struc- 
tures are represented in assembly code as contiguous collections of bytes. Even 
for scalar data types, assembly code makes no distinctions between signed or un- 
signed integers, between different types of pointers, or even between pointers and 
integers. 

The program memory contains the object code for the program, some infor- 
mation required by the operating system, a run-time stack for managing procedure 
calls and returns, and blocks of memory allocated by the user, (for example, by 
using the ma1 loc library procedure). 

The program memory is addressed using virmal addresses. At any given time, 
only limited subranges of virtual addresses are considered valid. For example, al- 
though the 32-bit addresses of IA32 potentially span a 4-gigabyte range of address 
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values, a typical program will only have access to a few megabytes. The operating 
system manages this virtual address space, translating virtual addresses into the 
physical addresses of values in the actual processor memory. 

A single machine instruction performs only a very elementary operation. For 
example, it might add two numbers stored in registers, transfer data between 
memory and a register, or conditionaUy branch to a new instruction address. The 
compiler must generate sequences of such instructions to implement program 
constructs such as arithmetic expression evaluation, loops, or procedure calls and 
returns. 

3.2.2 Code Examples 

Suppose we write a C code file code. c containing the following procedure defi- 
nition: 

1 int accum = 0; 
L 

3 int sum(int x, int y) 
4 { 
5 int t = x + y; 
6 accum += t; 
7 return t; 

8 1 

To see the assembly code generated by the C compiler, we can use the "-S" option 
on the command line: 

m i x >  gcc -02 -S c0de.c 

This will cause the compiler to generate an assembly Iile code . s and go no further. 
(Normally it would then invoke the assembler to generate an object code file). 

Gcc generates assembly code in its own format, known as GAS (for "Gnu 
ASsembler"). We will base our presentation on this format, which differs signifi- 
cantly from the format used in Intel documentation and by Microsoft compilers. 
See the bibliographic notes for advice on locating documentation of the different 
assembly code formats. 

The assembly-code file contains various declarations including the set of lines: 

sum: 
push1 %ebp 
movl %esp, %ebp 

movl 12 (8ebp) , %eax 
add1 8(%ebp),%eax 
add1 %eax, accum 
movl %ebp,%esp 

pop1 %ebp 
ret 
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Each indented line in the above code corresponds to a single machine instruction. 
For example, the push1 instruction indicates that the contents of register %ebp 
should be pushed onto the program stack. All information about local variable 
names or data types has been stripped away. We still see a reference to the global 
variable accum, since the compiler has not yet determined where in memory this 
variable will be stored. 

If we use the '-c' command line option, GCC will both compile and assemble 
the code: 

unix> gcc -02 -c c0de.c 

'Ihis will generate an object code file code. o that is in binary format and hence 
cannot be viewed directly. Embedded within the 852 bytes of the file code. o is 
a 19 byte sequence having hexadecimal representation: 

This is the object code corresponding to the assembly instructions listed above. A 
key lesson to learn from this is that the program actually executed by the machine 
is simply a sequence of bytes encoding a series of instructions The machine has 
very little information about the source code from which these instructions were 
generated. 

Aside: How do I find the byte representation of a program? 

First we used a disassembler (to be described shortly) to determine that the code for sum is 19 bytes long. 
Then we ran the GNU debugging tool GDB on file code. o and gave it the command: 

(gdh) x/l9xb sum 

telling it to examine (abbreviated 'x3 19 hex-formatted (also abbreviated 'x') bytes (abbreviated 'b'). You 
will find that GDB has many useful features for analyzing machine-lwel.programs, as will be discussed in 
Section 3.1 2. 

To inspect the contents of object code files, a class of programs known as 
disassemblers can be invaluable. These programs generate a format similar to 
assembly code from the object code. With Linux systems, the program OBJDUMP 

(for "object dump") can serve this role given the '-dl command line flag: 

mix> objdump -d code. o 

The result is (where we have added line numbers on the left and annotations on 
the right): 
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Disassembly of function sum in file code.0 

00000000 <sum>: 
Offset Bytes Equivalent assembly language 

0: 55 push Bebp 

1: 8 9 e 5  mov %esp, %ebp 
3: 8b 45 Oc mov Oxc(%ebp),%eax 
6 :  03 45 08 add Ox8(%ebp),%eax 
9 :  01 05 00 00 00 00 add %eax, 0x0 
f: 89 ec mov %ebp, %esp 

11: 5d POP %ebp 
12: c3 ret 
13: 90 

On the left we see the 19 hexadecimal byte values listed in the byte sequence 
earlier, partitioned into groups of 1 to 6 bytes each. Each of these groups is 
a single instruction, with the assembly language equivalent shown on the right. 
Several features are worth noting: 

IA32 instructions can range in length from 1 to 15 bytes. The instruction 
encoding is designed so that commonly used instructions and those with 
fewer operands require a smaller number of bytes than do less common 
ones or ones with more operands 
The instruction format is designed in such a way that from a given starting 
position, there is a unique decoding of the bytes into machine instructions 
For examplel only the instruction p u s h 1  Bebp can start with bytevalue 5 5. 

The disassembler determines the assembly code based purely on the byte 
sequences in the object file. It does not require access to the source or 
assembly-code versions of the program. 
The disassembler uses a slightly different naming convention for the instruc- 
tions than does GAS. In our example, it has omitted the suffix '1' from many 
of the instructions. 
Compared with the assembly code in code. s we also see an additional nop 
instruction at the end. This instruction will never be executed (it comes 
after the procedure return instruction), nor would it have any effect if it 
were (hence the name nop, short for "no operation" and commonly spoken 
as "no op"). The compiler inserted this instruction as a way to pad the space 
used to store the procedure. 

Generating the actual executable code requires running a linker on the set of 
object code files, one of which must contain a function main. Suppose in file 
main. c we had the following function: 

1 int m a i n 0  
2 
3 return sum(1, 3 ) ;  
4 1 
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! 
; 

I 
Then, we could generate an executable program test  as follows: 

! 
I unix> gcc -02 -0 prog code.0 main.c 

t 
The file prog has grown to 11,667 bytes, since it contains not just the code for 
our two procedures, but also information used to start and terminate the program 

8 
I as well as to interact with the operating system. We can also disassemble the file 

prog: 

I m i x >  objdump -d prog 

I The disassembler will extract various code sequences, including the following: 
i 

Disassembly of function sum in executable file prog 

080483134 <sum>: 
80483134: 55 push %ebp 
80483b5: 89 e5 mov %esp, %ebp 
80483b7: 8b 45 Oc mov Oxc(%ebp),%eax 
80483ba: 03 45 08 add Ox8 (%ebp) , %eax 
80483bd: 01 05 64 94 04 08 add %eax,Ox8049464 
80483~3: 89 ec mov %ebp, %esp 
80483~5: 5d POP %ebp 
80483~6: c3 ret 
80483~7: 90 nap 

! 
; Note that this code is almost identical to that generated by the disassembly of 

code. c. One main difference is that the addresses listed along the left are 
different-the linker has shifted the location of this code to a different range 
of addresses. A second difference is that the linker has finally determined the lo- 
cation for storing global variable accum. On line 6 of the disassembly for code . o 
the address of accum was still listed as 0. In the disassembly of prog, the address 
has been set to 0x8049464. This is shown in the assembly code rendition of the 

! 
instruction. It can also be seen in the last four bytes of the instruction, listed from 

! least-significant tomost as 64 94 04 08. 

3.2.3 A Note on Formatting 

The assembly code generated by GCC is somewhat difficult to read. It contains 

t some information with which we need not be concerned. On the other hand, it 
does not provide any description of the program or how it works. For example, 

1 
: suppose the file simple. c contains the following code: 
i 
! 

! 

! 1 int simple(int 'xp, int Y) 
2 { 
3 int t = *xp + y; 

I 4 *xp = t; 

I 
5 return t; 
6 1 
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When GCC is run with the '-s' flag, it generates the following file for simple. s: 

.file "simp1e.c" 

.version "01.01" 
gcc2-compiled.: 
.text 
.align 4 

.glob1 simple 
.type simple,@function 

simple: 
pushl %ebp 
movl %esp,%ebp 
movl 8(%ebp),%eax 
movl (%eax) ,%edx 
add1 12(%ebp),%edx 
movl %edx, (Beax) 
movl %edx,%eax 
movl %ebp, %esp 
popl %ebp 
ret 

. Lf el : 
.size simple,.Lfel-simple 
.ident "GCC: (GNU) 2.95.3 20010315 (release)" 

The file contains more information than we really require. All of the lines begin- 
ning with ' .  ' are directives to guide the assembler and linker. We can generally 
ignore these. On the other hand, there are no explanatory remarks about what 
the instructions do or how they relate to the source code. 

To provide a clearer presentation of assembly code, we will show it in a form 
that includes line numbers and explanatory annotations. For our example, an 
annotated version would appear as follows: 

simple: 
pushl %ebp 
movl %esp,%ebp 
movl 8(%ebp),%eax 
movl (%eax), %edx 
add1 12(%ebp),%edx 
movl %edx, (Beax) 
movi %edx,%eax 
movl %ebp, %esp 
popl %ebp 
ret 

Save frame pointer 
Create new frame pointer 

Get xp 
Retrieve *xp 

Add y to get t  
s tore  t  a t  *xp 

Set t  as  return value 
Reset stack pointer 

Reset frame pointer 
Return 

We typically show only the lines of code relevant to the point beingdiscussed. Each 
line is numbered on the left for reference and annotated on the right by a brief 
description of the effect of the instruction and how it relates to the computations 
of the original C code. This is a stylized version of the way assembly-language 
programmers format their code. 
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1 C declaration I Intel data type 1 GAS suffix ) Size (bytes) 
/ char I Byte 1 b 1 1 I 
short 

int 

unsigned 

1 long int 

Figure 3.1 Sizes of standard data types. 

unsigned long 

char * 
float 

3.3 Data Formats 

Word 
Double word 
Double word 
Double word 

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, In- 
tel uses the term "word" to refer to a 16-bit data type. Based on this, they 
refer to 32-bit quantities as "double words." They refer to 64-bit quantities as 
"quad words." Most instructions we will encounter operate on bytes or double 
words 

Figure 3.1 shows the machine representations used for the primitive data 
types of C. Note that most of the common data types are stored as double words. 
Thii includes both regular and long int's, whether or not they are signed. In 
addition, all pointers (shown here as char *) are stored as 4-byte double words 
Bytes are commonly used when manipulating string data. Floating-point numbers 
come in three different forms: single-precision (4-byte) values, corresponding to 
C data type float; double-precision (8-byte) values, corresponding to C data 
type double; and extended-precision (10-byte) values. Gcc uses the data type 
long double to refer to extended-precision floating-point values. It also stores 
them as 12-byte quantities to improve memory system performance, as will be 
discussed later. Although the ANSI C standard includes long double as a data 
type, they are implemented for most combinations of compiler and machine using 
the same 8-byte format as ordinary double. The support for extended precision 
is unique to the combination of GCC and IA32. 

As the table indicates, every operation in GAS has a single-character suffix 
denoting the size of the operand. For example, the mov (move data) instruction 
has three variants: movb (move byte), movw (move word), and movl (move 
double word). The suffix '1' is used for double words, since on many machines 32- 
bit quantities are referred to as "long words," a holdover from an era when 16-bit 
word sizes were standard. Note that GAS uses the suffix '1' to denote both a 4-byte 
integer as well as an bbyte double-precision floating-point number. This causes 
no ambiguity, since floating point involves an entirely different set of instructions 
and registers. 

double Double precision 

Double word 
Double word 
Single precision 

w 
1 

1 

1 

2 
4 
4 
4 

I 
1 

1 

s 

4 
4 
4 
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3.4 Accessing Information 

An IA32 central processing unit (CPU) contains a set of eight registers storing 
32-bit values. These registers are used to store integer data as well as pointers. 
Figure 3.2 diagrams the eight registers. Their names all begin with %e, but other- 
wise, they have peculiar names. With the original 8086, the registers were 16-bits 
and each had a specific purpose. The names were chosen to reflect these different 
purposes. With flat addressing, the need for specialized registers is greatly re- 
duced. For the most part, the first six registers can be considered general-purpose 
registers with no restrictions placed on their use. We said "for the most part," 
because some instructions use tixed registers as sources andlor destinations. In 
addition, within procedures there are different conventions for saving and restor- 
ing the first three registers (Beax, %ecx, and %edx), than for the next three 
(%ebx, %edi,  and %esi). This will be discussed in Section 3.7. The final two 
registers (%ebp and %esp) contain pointers to important places in the program 
stack. They should only be altered according to the set of standard conventions 
for stack management. 

As indicated in Figure 3.2, the low-order two bytes of the first four registers 
can be independently read or written by the byte operation instructions. This 
feature was provided in the 8086 to allow backward compatibility to the 8008 and 
8080-two &bit microprocessors that date back to 1974. When a byte instruction 
updates one of these single-byte "register elements," the remaining three bytes of 
the register do not change. Similarly, the low-order 16 bits of each register can be 
read or written by word operation instructions. This feature stems from IA32's 
evolutionary heritage as a 16-bit microprocessor. 

Figure 3.2 
Integer registers. All 
eight registers can 
be accessed as either 
16 bits (word) or 32 bits 
(double word). The , b o  
low-order bytes of the 
first four registers can be 
accessed independently. 

%ecx %CX 

%edx 

- -,.  , 

%ebx %bx (*1] 

%esl t.1 I) 
I- 

%edl %dl F) 
%esp %9p 

I I 

Stack pointer 



Section 3.4 Accessing Information 137 

3.4.1 Operand Specifiers 

Most instructions have one or more operands, specifying the source values to 
reference in performing an operation and the destination location into which to 
place the result. IA32 supports a number of operand forms (Figure 3.3). Source 
values can be given as constants or read from registers or memory. Results can 
be stored in either registers or memory. Thus, the different operand possibilities 
can be classified into three types. The first type, immediate, is for constant values. 
With GAS, these are written with a '$' followed by an integer using standard C 
notation, such as, $-577 or $ 0 ~ 1 ~ .  Any value that fits in a 32-bit word can be 
used, although the assembler will use one or two-byte encodings when possible. 
The second type, register, denotes the contents of one of the registers, either one 
of the eight 32-bit registers (e.g., Beax) for a double-word operation, or one of 
the eight single-byte register elements (e.g., % a l )  for a byte operation. In our 
figure, we use the notation E, to denote an arbitrary register a ,  and indicate its 
value with the reference R[E,], viewing the set of registers as an array R indexed 
by register identifiers. 

The third type of operand is a memory reference, in which we access some 
memory location according to a computed address, often called the effective ad- 
dress. Since we view the memory as a large array of bytes, we use the notation 
Mb[Addr] to denote a reference to the b-byte value stored in memory starting at 
address Addr. To simplify things, we will generally drop the subscript b.  

As Figure 3.3 shows, there are many different addressing modes allowing 
different forms of memory references. The most general form is shown at the 
bottom of the table with syntax I m m  ( ~b , E,  , s ) . Such a reference has four 
components: an immediate offset I m m ,  a base register ~ b ,  an index register E , ,  
and a scale factor s ,  where s must be 1, 2, 4, or 8. The effective address is 
then computed as imm + R[Eb] + R [ E , ]  . s. This general form is often seen when 
referencing elements of arrays. The other forms are simply special cases of this 

Type 
Immediate 
Register 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 

Form 
$ lmm 

Imm 
( E , )  

Imm ( Eb 

( E b # E i )  

Imm ( E b ,  Ei ) 

( , E i , s )  
Imm( ,E i , s )  
( E b r E i r s )  

Imm(Eb,Ei,s) 

Operand value / Name 
Imm 1 Immediate 

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register values, or values from 
memory. The scaling factor s must be either 1, 2, 4, or 8. 

R[EoI  
M [lmm] 

M[R[Ea] I  
M[lmm + R [ E ~ ] ]  

M [ R [ E b l +  R[EiII  

Register 
Absolute 
Indirect 
Base + displacement 
Indexed 
Indexed 
Scaled indexed 

M[lmm + R[Ei]  . s] Scaled indexed 
M [ R [ E b ]  + R[Ei]  . s] Scaled indexed 
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general form where some of the components are omitted. As we will see, the 
more complex addressing modes are useful when referencing array and structure 
elements. 

Assume the following values are stored at the indicated memory addresses and 
registers: 

I Fill in the following table showing the values for the indicated operands: 

1 1 Operand 1 Value 1 

3.4.2 Data Movement Instructions 

Among the most heavily used instructions are those that perform data movement. 
The generality of the operand notation allows a simple move instruction to per- 
form what in many machines would require a number of instructions. Figure 3.4 
lists the important data movement instructions. The most common is the movl 
instruction for moving double words. The source operand designates a value that 
is immediate, stored in a register, or stored in memory. The destination operand 
designates a location that is either a register or a memory address IA32 imposes 
the restriction that a move instruction cannot have both operands refer to mem- 
ory locations. Copying a value from one memory location to another requires two 
instructions-the first to load the source value into a register, and the second to 
write this register value to the destination. 

The following movl instruction examples show the five possible combinations 
of source and destination types. Recall that the source operand comes first and 
the destination second: 
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Instruction I Effect ( Description 1 
movl S , D  D t S  1 Move double word 

Figure 3.4 Data movement instructions. 

mow S, D - 
movb S , D  

movsbl S, D 
movzbl S, D 
P 

1 movl $Ox4050,%eax Immediate--Register 
2 movl %ebp,%esp Register--~egister 

3 movl ( % e d i ,  %ecx) , %eax Memory--Register 
4 movl 5-17. (%esp)  Immedia te--Memory 

5 movl %eax, -12 (%ebp) Register--Memory 

?he movb instruction is similar, except that it moves just a single byte. When 
one of the operands is a register, it must be one of the eight single-byte register 
elements illustrated inFigure 3.2. Similarly, the movw instruction moves two bytes. 
When one of its operands is a register, it must be one of the eight 2-byte register 
elements shown in Figure 3.2. 

Both the movsbl and the movzbl instruction serve to copy a byte and to set 
the remaining bits in the destination. The movsbl instruction takes a single-byte 
source operand, performs a sign extension to 32 bits (i.e., it sets the high-order 24 
bits to the most significant bit of the source byte), and copies this to a double-word 
destination. Similarly, the movzbl instruction takes a single-byte source operand, 
expands it to 32 bits by adding 24 leading zeros, and copies this to a double-word 
destination. 

push1 S 

D t S ( Move word 

I 

Aside: Comparing byte movement instructions. 

D t S  

D t SignExtend(S) 
D t ZeroExtend(S) 

Observe that the three byte movement instructions movb, movsbl, and movzbl differ from each other 
I in subtle ways. Here is an example: 
I 4  

- 
Move byte 
Move sign-extended byte 
Move zero-extended byte 

I 

I Assume inltlally that 8dh = $0, 8eax = 98765432 
i 
! 1 movb %dh, %a1 %eax = 9876548D 
I 
I 2 m0vsbl %dh, %eax Beax = FFFFFFBD 

i 3 movzbl %dh, %eax 8eax = 00000080 

I 
I In these examples, all set the low-order byte of register Beax to the second byte of Bedx. The movb 

1 instruction does not change the other three bytes. The movsbl instruction sets the other three bytes to 
either all ones or all zeros depending on the high-order bit of the source byte. The movzbl instruction 
sets the other three bytes to all zeros in any case. 
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Initially 

1 
Stack "botlom" 

lncreas~ng 
address 

0x108 

Stack 'lop" 

push1 %sax pop1 %ad% 

0x123 

%esp 0x108 

L p p - J  
Stack 'lop" 

0x123 

Stack 'lop" 

Figure 3.5 Illustration of stack operation. By convention, we draw stacks upside-down, 
so that the "top" of the stack is shown a t  the bottom. IA32 stacks grow toward lower 
addresses, so pushing involves decrementing the stack pointer (register %esp) and stor- 
ing to memory, while popping involves reading from memory and incrementing the stack 
pointer. 

The final two data movement operations are used to push data onto and pop 
data from the program stack. As we will see, the stack plays a vital role in the 
handling of procedure calls. Both the pushl and the pop1 instructions take a 
single operand-the data source for pushing and the data destination for popping. 
The program stack is stored in some region of memory. As illustrated inFigure 3.5, 
the stack grows downward such that the top element of the stack has the lowest 
address of all stack elements. (By convention, we draw stacks upside-down, with 
the stack "top" shown at the bottom of the figure). The stack pointer %esp holds 
the address of the top stack element. Pushing a double-word value onto the stack 
therefore involves first decrementing the stack pointer by 4 and then writing the 
value at the new top of stack address. Therefore, the behavior of the instruction 
pushl %ebp is equivalent to that of the following pair of instructions: 

sub1 $4,%esp 

movl %ebp, (%esp) 

except that the pushl instruction is encoded in the object code as a single byte, 
whereas the pair of instruction shown above requires a total of 6 bytes. The 
first two columns in our figure illustrate the effect of executing the instruction 
pushl %eax when %esp is 0x108 and %eax is 0x123. First %esp would be 
decremented by 4, giving 0x104, and then 0x123 would be stored at memory 
address 0x104. 
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Popping a double word involves reading from the top of stack location and 
then incrementing the stack pointer by 4. Therefore, the instruction popl  %eax 
is equivalent to the following pair of instructions: 

The thud column of Figure 3.5 illustrates the effect of executing the instruction 
popl %edx immediately after executing the pushl.  Value 0x123 would be read 
frommemory and written to register %edx. Register %esp would be incremented 
back to 0x108. As shown in the figure, the value 0x123 would remain at memory 
location 0x104 until it is overwritten by another push operation. However, the 
stack top is always considered to be the address indicated by %esp. 

Since the stack is contained in the same memory as the programcode and other 
forms of program data, programs can access arbitrary positions within the stack 
using the standard memory addressing methods. For example, assuming the top- 
most element of the stackis a double word, the instructionmovl 4 (%esp)  , %edx 
will copy the second double word from the stack to register %edx. 

3.4.3 Data Movement Example 

New to C?: Some examples of pointers. 

Function exchange (Figure 3.6) provides a good illustration of the use of pointers in C. Argument xp is 
a pointer to an integer, while y is an integer itself. The statement 

i n t  x = *xp; 

indicates that we should read the value stored in the location designated by xp and store it as a local 
variable named x. This read operation is known as pointer dereferencing. The C operator * performs 
pointer dereferencing. 

The statement 

i 
i does the r&erse-it writes the value of parameter y at the location designated by xp. This also a form of 
I 
1 pointer dereferencing (and hence the operator *), but it indicates a write operation since it is on the left 
I hand side of the assignment statement. 
i 
I The following is an example of exchange in action: 

int a = 4; 
int b = exchange(&a, 3 ) ;  
printf("a = %d, b = %d\nN, a, b); 

/ This code will print 
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1 int exchange(int * x p ,  int y )  

2 I 1 movl 8 (%ebp), %eax Get xp 
3 i n t  x = *xp; 2 movl 12(%ebp),%edx Get y 
4 3 movl (Beax), %ecx G e t  x at *xp 
5 * xp = Y ;  4 movl Bedx, (Beax) store y at *xp 
6 return x; 5 movl %ecx,Beax S e t  x a s  return v a l u e  
7 1 

codelasm/exchange.c 

(a) C code (b) Assembly code 

Figure 3.6 C and assembly code for exchange routine body. The stack set-up and completion portions have been 
omitted. 

As an example of code that uses data movement instructions, consider the 
data exchange routine shown in Figure 3.6, both as C code and as assembly code 
generated by GCC. We omit the portion of the assembly code that allocates space 
on the run-time stack on procedure entry and deallocates it prior to return. The 
details of this set-up and completion code will be covered when we discuss proce- 
dure linkage. The code we are left with is called the "body." 

When the body of the procedure starts execution, procedure parameters xp 
and y are stored at offsets 8 and 12 relative to the address in register %ebp. 
Instructions 1 and 2 then move these parameters into registers %eax and %edx. 
Instruction 3 dereferences xp and stores the value in register %ecx, corresponding 
to program value x. Instruction 4 stores y at xp. Instruction 5 moves x to register 
%eax. By convention, any function returning an integer or pointer value does so 
by placing the result in register %eax, and so this instruction implements line 6 
of the C code. This example illustrates how the movl instruction can be used to 
read from memory to a register (instructions 1 to 3), to write from a register to 
memory (instruction 4), and to copy from one register to another (instruction 5). 

Two features about this assembly code are worth noting. First, we see that 
what we call "pointers" in C are simply addresses. Dereferencing a pointer in- 
volves putting that pointer in a register, and then using this register in an indirect 
memory reference. Second, local variables such as x are often kept in registers 
rather than stored in memory locations. Register access is much faster than mem- 
ory access. 

You are given the following information. A function with prototype 

I void decode1 (int *xp, int *yp, int *zp) ; 



Section 3.5 Arithmetic and Logical Operations 143 

is compiled into assembly code. The body of the code is as follows: 

1 movl 8 (Bebp) , Bedi 
2 movl 12(%ebp),%ebx 
3 movl 16(%ebp),%esi 
4 movl (%edi ) . %eax 
5 movl (%ebx),%edx 
6 movl (%esi),%ecx 
7 movl %eax, (%ebx) 
8 movl %edx, (%esi) 
9 movl %ecx, (%edi) 

Parameters xp, yp, and zp are storcd at memory locations with offsets 8, 12, 
and 16, respectively, relative to the address in register %ebp. 

Write C code for decode1 that will have an effect equivalent to the as- 
sembly code above. You can test your answer by compiling your code with the 
-S switch. Your compiler may generate code that differs in the usage of reg- 
isters or the ordering of memory references, but it should still be functionally 
equivalent. 

3.5 Arithmetic and Logical Operations 

Figure 3.7 lists some of the double-word integer operations, divided into four 
groups. Binary operations have two operands, while unary operations have one 
operand. These operands are specified using the same notation as described in 
Section 3.4. With the exception of leal, each of these instructions has a counter- 
part that operates on words (16 bits) and on bytes. The suffix '1' is replaced by 'w' 
for word operations and 'b' for the byte operations. For example, add1 becomes 
addw or addb. 

3.5.1 Load Effective Address 

The Load Effective Address leal instruction is actually a variant of the movl 
instruction. It has the form of an instruction that reads from memory to a register, 
but it does not reference memory at all. Its first operand appears to be a memory 
reference, but instead of reading from the designated location, the instruction 
copies the effective address to the destination. We indicate this computation 
in Figure 3.7 using the C address operator &S. This instruction can be used to 
generate pointers for later memory references. In addition, it can be used to 
compactly describe common arithmetic operations For example, if register %edx 
contains value x, then the instruction leal 7 (%edx, %edx, 4 )  , %eax will set 
register %eax to 5x + 7. 'The destination operand must be a register. 

Suppose register Beax holds value x and %ecx holds value y. Fill in the table 
below with formulas indicating the value that will be stored in register %edx 
for each of the following assembly code instructions. 
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decl 
negl 
not1 

add1 

subl 

imull 

xorl 

, or1 

Decrement 
Negate 
Complement 
Add 
Subtract 
Multiply 
Exclusive-or 
Or 

I 
and1 S , D  D c D & S  1 And 
sall k , D I  D  t D < <  k  I Leftshift 1 :f; k ,  D  1 D  e D  << k  Left shifi (same as sall) , 

k ,  D  D t D  >> k  Arithmetic right shift 
shrl k ,  D  D  t D >> k  Logical right shift 

Figure 3.7 Integer arithmetic operations. The load effective address (leal) instruction is 
commonly used to perform simple arithmetic. The remaining ones are more standard unary 
or binary operations. Note the nonintuitive ordering of the operands with GAS. 

I leal (%eax,%ecx), %edx 

leal (%eax,%ecx.41. Bedx . . .  

leal 7(%eax,%eax,8), %edx / I 

leal OxA(.%ecx.4). Bedx . . . . .  I 

leal 9(%eax,%ecx,2), %edx ( I 

3.5.2 Unary and Binary Operations 

Operations in the second group are unary operations, with the single operand 
serving as both source and destination. This operand can be either a register or a 
memory location. For example, the instruction i n c l  (%esp) causes the element 
on the top of the stack to be incremented. This syntax is reminiscent of the C 
increment (+ +) and decrement operators (- -). 

The third group consists of binary operations, where the second operand is 
used as both a source and a destination. This syntax is reminiscent of the C 
assignment operators such as +=. Observe, however, that the source operand is 
given first and the destination second. This looks peculiar for noncommutative 
operations. For example, the instruction subl Beax, %edx decrements register 
%edx by the value in %eax. The first operand can be either an immediate value, a 
register, or a memory location. The second can be either a register or a memory 
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location. As with the movl instruction, however, the two operands cannot both 
be memory locations. 

Assume the following values are stored at the indicated memory addresses and 
registers: 

Fill in the following table showing the effects of the following instructions, 
both in terms of the register or memory location that will be updated and the 
resulting value: 

( ~nstruction I Destination Value 

incl B(%eax) 

decl %ecx 

3.5.3 Shift Operations 

The final group consists of shift operations, where the shift amount is given first, 
and the value to shift is given second. Both arithmetic and logical right s k i s  are 
possible. The shift amount is encoded as a single byte, since only shifts amounts 
between 0 and 31 are allowed. The shift amount is given either as an immediate 
or in the single-byte register element %cl. As Figure 3.7 indicates, there are 
two names for the left shiit instruction: s a l l  and shl l .  Both have the same 
effect, filling from the right with 0s. The right shift instructions differ in that 
s a r l  performs an arithmetic shlft (fill with copies .of the sign bit), whereas shr l  
performs a logical shift (fill with 0s). 

Suppose we want to generate assembly code for the following C function: 

int shift_left2_rightn(int x, int n) 
{ 
x <<: 2; 
x >>= n; 
return x; 

1 
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The code that follows is aportion of the assembly code that performs the actual 
shifts and leaves the h a 1  value in register Beax. Two key instructions have 
been omitted. Parameters x and n are stored at memory locations with offsets 
8 and 12, respectively, relative to the address in register Bebp. 

1 movl 12 (%ebp) , %ecx Get n 
2 movl 8 (%ebp) , %eax Get x 

3 x <<= 2 

4 x >>= n 

1 Fi in the missing instructions, following the annotations on the right. The right 
1 shift should be performed arithmetically. 

3.5.4 Discussion 

With the exception of the right-shift operations, none of the instructions distin- 
guish between signed and unsigned operands. Two's complement arithmetic has 
the same bit-level behavior as unsigned arithmetic for all of the instructions listed. 

Figure 3.8 shows an example of a function that performs arithmetic operations 
and its translation into assembly. As before, we have omitted the stack set-up and 
completion portions. Function arguments x, y, and z are stored in memory at 
offsets 8,12, and 16 relative to the address in register %ebp, respectively. 

Instruction 3 implements the expression x+y, getting one operand y from 
register %eax (which was fetched by instruction 1) and the other directly from 
memory. Instructions 4 and 5 perform the computation z*48, first using the 
leal instruction with a scaled-indexed addressing mode operand to compute 
(Z + 22) = 32, and then shifting this value left 4 bits to compute 24 .3z = 482. The 
C compiler often generates combinations of add and shift instructions to perform 
multiplications by constant factors, as was discussed in Section 2.3.6 (page 76). 

1 int arith(int x, 
2 int y, 
3 int Z) 
4 { 
5 int tl = x+y; 
6 int t2 = z*48; 
7 int t3 = tl & OxFFFF; 
8 int t4 = t2 * t3; 
9 

10 return t4; 
11 1 

c o d h d a r i t h . ~  

movl 12(%ebp),%eax 
movl 16(%ebp),%edx 
add1 8(%ebp),%eax 
leal (%edx,%edx,2),%edx 
sall $4,%edx 
and1 $65535,%eax 
imull %eax,%edx 
movl %edx, Beax 

Get y 

Get 2 

Compute tl = xty 
Compute 2'3 

Compute t2 = 2'48 
Compute t3 = tl&OxFFFF 

Compute t4 = tZit3 

Set t4 as return val 

(a) C code (b) Assembly code 

Figure 3.8 C and assembly code for arithmetic routine body. The stack set-up and completion portions have been 
omitted. 
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Instruction 6 performs the AND operation and instruction 7 performs the final 
multiplication. Then instruction 8 moves the return value into register Beax. 

In the assembly code of Figure 3.8, the sequence of values in register %eax 
correspond to program values y ,  tl, t3 ,  and t 4  (as the return value). In general, 
compilers generate code that uses individual registers for multiple program values 
and that move program values among the registers. 

I 
I 

I Problem 3 8  

Explain why this instructionwouldbe there, even though there are noExcLusIvE- 
OR operators in our C code. What operation in the C program does this instruc- 
tion implement? 

i 

I 
I 

1 
I 

3.5.5 Special Arithmetic Operations 

In the compilation of the loop 

f o r  (i = 0 ;  i < n; it+) 

v  += i; 

we find the following assembly code line: 

Figure 3.9 describes instructions that support generating the full 64-bit product of 
two 32-bit numbers, as well as integer division. 

The imull instruction listed in Figure 3.7 is known as the "two-operand" 
multiply instruction. It generates a 32-bit product from two 32-bit operands,'un- 
plementing the operations *$ and *i2 described in Sections 2.3.4 and 2.3.5. Re- 
call that when truncating the product to 32 bits, both unsigned multiply and two's 
complement multiply have the same bit-level behavior. IA32 also provides two 
different "one-operand" multiply instructions to compute the full 64-bit product 
of two 32-bit values-one for unsigned ( mull), and one for two's complement 

Instruction I Effect ( Description 
imull S I R[%edx]:R[%eax] t S x R[%eax] I Signed full multiply 

Figure 3.9 Special arithmetic operations. These operations provide full 64-bit 
multiplication and division, for both signed and unsigned numbers. The pair of registers 
%edx and %eax are viewed as forming a single 64-bit quad word. 

mull S ~[%edx]:~[%eax] t S x ~[%eax] 
c l t d  R[%edx]:R[%eax] t SignExtend(R[%eax]) 
i d i v l  S R[%edx] t R[%edx]:R[%eax] mod S ;  

R[%eax] t R[%edx]:R[%eax] + S 
d i v l  S R[%edx] t R[%edx]:R[%eax] mod S; 

R[%eax] t R[%edx]:R[%eax] + S 

Unsigned full mitiply 
Convert to quad word 
Signed divide 

-- 
Unsigned divide 
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( imull)  multiplication. For both of these, one argument must be in register %eax, 
and the other is given as the instruction source operand. Theproduct is thenstored 
in registers %edx (high-order 32 bits) and %eax (low-order 32 bits). Note that 
although the name i m u l l  is used for two distinct multiplication operations, the 
assembler can tell which one is intended by counting thenumber of operands. 

As an example, suppose we have signed numbers x and y stored at positions 
8 and 12 relative to %ebp, and we want to store their full 64-bit product as 8 bytes 
on top of the stack. 'Ihe code would proceed as follows: 

x a t  % e b p ~ 8 ,  y a t  8 e b p t 1 2  
1 movl 8 ( %ebp ) , %eax put x i n  %eax 

2 imull 12 (%ebp) M u l t i p l y  by y 

3 push1 %edx Push h i g h - o r d e r  3 2  b i t s  
4 push1 %eax Push low-order  32 bi ts  

Observe that the order in which we push the two registers is correct for a 
little-endian machine in which the stack grows toward lower addresses (i.e., the 
low-order bytes of the product will have lower addresses than the high-order 
bytes). 

Our earlier table of arithmeticoperations (Figure 3.7) does not list any division 
or modulus operations. These operations are provided by the single-operand 
divide instructions similar to the single-operand multiply instructions. The signed 
division instruction i d i v l  takes as dividend the 64-bit quantity in registers %edx 
(high-order 32 bits) and %eax (low-order 32 bits). The divisor is given as the 
instruction operand. The instructions store the quotient in register %eax and the 
remainder in register %edx. The cltd'instruction can be used to form the 64-bit 
dividend from a 32-bit value stored in register %eax. ?his instruction sign extends 
%eax into %edx. 

As an example, suppose we have signed numbers x and y stored in positions 
8 and 12 relative to %ebp, and we want to store values x /y  and x%y on the stack. 
The code would proceed as follows: 

x a t  %ebp+B, y a t  %ebp+lZ 
1 movl 8(%ebp),%eax p u t  x i n  % e a x  

2 cltd S i g n  e x t e n d  i n t o  Bedx 
3 idivl 12 (%ebp) D i v i d e  by y 

4 push1 %eax push x / y 

5 push1 %edx push x 8 y 

The d i v l  instruction performs unsigned division. Typically register %edx is set 
to 0 beforehand. 

3.6 Control 

Up to this point, we have considered ways to access and operate on data. Another 
important part of program execution is to control the sequence of operations that 

- - 

l l i s  instruction is called cdq in the Intel documentation, one of the few cases where the GAS name 
for an instruction bears no relation to the Intel name. 
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are performed. The default for statements in C as well as for assembly code is 
to have control flow sequentially, with statements or instructions executed in the 
order they appear in the program. Some constructs in C, such as conditionals, 
loops, and switches, allow the control to flow in nonsequential order, with the 
exact sequence depending on the values of program data. 

Assembly code provides lower-level mechanisms for implementing nonse- 
quential control flow. The basic operation is to jump to a different part of the pro- 
gram, possibly contingent on the result of some test. The compiler must generate 
instruction sequences that build upon these low-level mechanisms to implement 
the control constructs of C. 

In our presentation, we first cover the machine-level mechanisms and then 
show how the different control constructs of C are implemented with them. 

3.6.1 Condition Codes 

In addition to the integer registers, the CPU maintains a set of single-bit condition 
code registers describing attributes of the most recent arithmetic or logical oper- 
ation. These registers can then be tested to perform conditional branches. The 
most useful condition codes are: 

CF: Carry Flag. The most recent operation generated a carry out of the most 
significant bit. Used to detect overflow for unsigned operations. 

ZF: Zero Flag. The most recent operation yielded zero. 

SF: SignFlag. The most recent operation yielded a negative value. 

OF: Overflow Flag. The most recent operation caused a two's complement 
overflow--either negative or positive. 

For example, suppose we used the add1 instruction to perform the equivalent of 
the C expression t=a+b, where variables a, b, and t are of type i n t .  Then the 
condition codes would be set according to the following C expressions: 

CF: (unsigned t) (unsigned a) Unsigned overtlow 
ZF: (t == 0 )  Zero 
SF: (t < 0 )  Negative 
OF: (a < 0  == b < 0 )  && ( t  < 0  ! =  a < 0 )  Signedoverflow 

The l e a l  instruction does not alter any condition codes, since it is intended to be 
used in address computations. Otherwise, all of the instructions listed in Figure 3.7 
cause the condition codes to be set. For the logical operations, such as xorl ,  the 
carry and overflow flags are set to 0. For the shift operations, the carry flag is set 
to the last bit shifted out, while the ovedow flag is set to 0. 

In addition to the operations of Figure 3.7, the following table shows two op- 
erations (having 8,16, and 32-bit forms) that set conditions codes without altering 

1 

I any other registers: 
I 
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Instruction ] Based v ~ e s c r i ~ t i o n  
cmpb sz, SI I S1 - Sz I Compare bytes 7 
testb Sz, S1 1 Sl & S2 1 
C ~ P W  s2, $1 1 4 - Sz I i:;ed2sh; 1;:; ITestword 1 

Compare double words 
( test1 A $2, SI Test double word 

The cmpb, cmpw, and cmpl instructions set the condition codes according to the 
difference of their two operands. With GAS format, the operands are listed in 
reverse order, making the code difficult to read. These instructions set the zero 
flag if the two operands are equal. The other flags can be used to determine 
ordering relations between the two operands. 

The testb, testw, and testl instructions set the zero and negative flags 
based on the AND of their two operands. Typically, the same operand is repeated 
(e.g., testl Beax, %eax to see whether %eax is negative, zero, or positive), or 
one of the operands is a mask indicating which bits should be tested. 

3.6.2 Accessing the Condition Codes 

Rather than reading the condition codes directly, the two most common methods 
of accessing them are to set an integer register or to perform a conditional branch 
based onsome combination of condition codes. The different set instructions de- 
scribed in Figure 3.10 set a single byte to 0 or to 1 depending on some combination 
of the conditions codes. The destination operand is either one of the eight single- 
byte register elements (Figure 3.2) or a memory location where the single byte is 
to be stored. To generate a 32-bit result, we must also clear the high-order 24 bits. 

I Instruction 1 Svnonvm 1 Effect 1 Set condition , , I 

sete D ( setz 1 D e Z F  ( Equal /zero 

1 Greater or equal (signed >=) I 

D c " z F  

D t SF 

D t  " S F  

D setnle D t - (SF A OF) h "ZF 

1 Less (signed <) I 

Not equal I not zero 
Negative 
Nonnegative 
Greater (signed >) 

setae D c -C!? Above or equal (unsigned >=) I setb D t CF Below (unsigned i) 

setle D 
- 

setng 1 D t (SF * OF) I ZF 1 Less or equal (signed <=) 

Figure 3.10 The set instructions. Each instruction sets a single byte to 0 or 1 based on some combination of the 
condition codes. Some instructions have "synonyms," i.e., alternate names for the same machine instruction. 

seta <setnbe Above (unsigned >) 

1 setbe D setna 1 D + C F ( Z F  1 Below or equal (unsigned <=) 1 
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A typical instruction sequence for a C predicate (such as a < b) is therefore as 
follows: 

Note: a is ir, Be&, b is in Beax 
1 cmpl Beax, Bedx Compare a :b 

2 set1 %a1 se t  low order byte of Beax to 0 or 1 

3 movzbl Bal, %eax Set remaining bytes of 8eax to 0 

The movzbl instruction is used to clear the high-order three bytes. 
For some of the underlying machine instructions, there are multiple possi- 

ble names, which we list as "synonyms." For example both "setg" (for "SET- 
Greater") and "setnle" (for "SET-Not-Less-or-Equal") refer to the same ma- 
chine instruction. Compilers and disassemblers make arbitrary choices of which 
names to use. 

Although all arithmetic operations set the condition codes, the descriptions of 
the different set commands apply to the case where a comparison instruction has 
been executed, setting the condition codes according to the Eomputation t = a - 

b. For example, consider the sete, or "Set whenequal" instruction. When a = b, 
we will have t = 0, and hence the zero flag indicates equality. 

Similarly, consider testing a signed comparison with the setl, or "Set when 
less," instruction. When a and b are in two's complement form, then for a < b 
we will have a - b < 0 if the true difference were computed. When there is no 
overflow, this would be indicated by having the sign flag set. When there is positive 
overflow, because a - b is a large positive number, however, we will have t < 0. 
When there is negative overflow, because a - b is a small negative number, we 
will have t r 0. In either case, the sign flag will indicate the opposite of the sign 
of the true difference. Hence, the EXCLUSIVE-OR of the overflow and sign bits 
provides a test for whether a < b. The other signed comparison tests are based 
on other combinations of SF " OF and zF. 

For the testing of unsigned comparisons, the carry flag will be set by the cmpl 
instruction when the integer difference a - b of the unsigned arguments a and b 
would be negative, that is, when (unsigned) a < (unsigned) b. Thus, these 
tests use combinations of the carry and zero flags. 

In the following C code, we have replaced some of the comparison operators 
with "-" and omitted the data types in the casts. 

char ctest(int a, 
( 
char tl = 
char t2 = 
char t3 = ( 

char t4 = ( 

char t5 = 
char t6 = 
return tl + t2 

1 

int b, int C) 
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For the original C code, GCC generates the following assembly code 

movl E(%ebp),%ecx 
movl 12(%ebp),%esi 
cmpl %esi,%ecx 
set1 %a1 
cmpl %ecx, %esi 
setb -l(%ebp) 
cmpw %cx,l6(%ebp) 
setge -2 (%ebp) 
movb %cl,%dl 
cmpb 16(%ebp),%dl 
setne Bbl 
cmpl %esi,l6(%ebp) 
setg -3 (%ebp) 
test1 %ecx,%ecx 
setg %dl 
addb -1 (%ebp) ,%a1 
addb -2 (%ebp) , %a1 
ad& %bl,%al 
addb -3 (%ebp) , %a1 
ad& %dl,%al 
movsbl %a1 , %eax 

Get a 

Get b 
Compare a:b 

Compute tl 

Compare b:a 
Compute t2 
Compare c:a 

Compute t3 

Compare a:c 

Compute t4 

Compare c:b 
Compute t5 
Test a 

Compute t6 
Add t2 to tl 

Add t3 to tl 

Add t4 to tl 

Add t5 to tl 

Add t6 to tl 
Convert sum from char to int 

Based on this assembly code, fill in the missing parts (the comparisons and the 
casts) in the C code. 

3.6.3 Jump Instructions and their Encodings 

Under normal execution, instructions follow each other in the order they are 
listed. A jump instruction can cause the execution to switch to a completely new 
position in the program. (See Figure 3.11.) These jump destinations are generally 
indicated by a label. Consider the following assembly code sequence: 

1 xorl %eax,%eax Set Beax to 0 

2 jmp .L1 Goto .L1 

3 movl (%eax) , %edx ~ u l l  pointer dereference 

4 .L1: 
5 pop1 %edx 

The instruction jmp . ~1 will cause the program to skip over the movl instruction 
and instead resume execution with the popl instruction. In generating the object 
code file, the assembler determines the addresses of all labeled instructions and 
encodes the jump targets (the addresses of the destination instructions) as part of 
the jump instructions. 

The jmp instruction jumps unconditionally. It can be either a direct jump, 
where the jump target is encoded as part of the instruction, or an indirect jump, 
where the jump target is read from a register or a memory location. Direct jumps 
are written in assembly by giving a label as the jump target, e.g., the label " . L1" 
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1 jmp *Operand 1 
-- I I I Indirect jump 

I j e  Label j z  Z F  ( Equal /zero 

Instruction I Synonym 1 Jump condition 1 = i n p q  

1 Label I jnz  1 ;; _L_----- Not equal 1 not zero 
Label 1 Negative 

jmp Label 1 1  ( Direct jump 

Figure 3.11 The jump instructions. These instructions jump to a labeled destination when 
the jump condition holds. Some instructions have "synonyms," alternate names for the 
same machine instruction. 

"(SF OF) & -ZF 

Label SF OF 

Label (SF ^ OF) ( Z F  

Label jnbe -CF & -ZF 

jae Label j nb "CF 

Label jnae 
jbe Label jna I C F ~ Z F  

in the code above. Indirect jumps are written using '*' followed by an operand 
specifier using the same syntax as used for the movl instruction. As examples, the 
instruction 

Nonnegative 
Greater (signed >) 
Greater or equal (signed >=) 
Less (signed <) 
Less or equal (signed <=) -- 
Above (unsigned >) 
Above or equal (Unsigned >=) 
Below (unsigned <) 
Below or equal (unsigned <=) 

1 ,  jmp *%eax 

1 : uses the value in register %eax as the jump target, and the instruction 

reads the jump target from memory, using the value in %eax as the read address. 
The other jump instructions either jump or continue executing at the next 

i instruction in the code sequence depending on some combination of the condition 
codes. Note that the names of these instructions and the conditions under which 
they jumpmatch those of the set instructions. As with the set instructions, some 
of the underlying machine instructions have multiple names. Conditional jumps 
can only be direct. 

Although we will not concern ourselves with the detailed fonnat of object 
code, understanding how the targets of jump instructions are encoded will be- 
come important when we study linking in Chapter 7. In addition, it helps when 
interpreting the output of a disassembler. In assembly code, jump targets are writ- 
ten using symbolic labels. The assembler, and later the linker, generate the proper 
encodings-of the jump targets. There are several different encodings for jumps, 
but some of the most commonly used ones are PC-relative. That is, they encode 
the difference between the address of the target instruction and the address of 
the instruction immediately following the jump. These offsets can be encoded 
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using one, two, or four bytes. A second encoding method is to give an "absolute" 
address, using four bytes to directly specify the target. The assembler and linker 
select the appropriate encodings of the jump destinations 

As an example of PC-relative addressing, the following fragment of assembly 
code was generated by compiling a file silly. c. It contains two jumps: the j le 
instruction on line 1 jumps forward to a higher address, while the j g instruction 
on line 8 jumps back to a lower one. 

1 jle .L4 If <=, g o t o  dest2 
2 .p2align 4,,7 A l i g n s  next i n s t r u c t i o n  t o  m u l t i p l e  o f  8 

3 .L5: destl: 
4 movl %edx,%eax 
5 sarl $l,%eax 
6 sub1 %eax,%edx 
7 test1 %edx,%edx 
8 jg .L5 If >, g o t o  destl 
9 .L4: dest2: 
10 movl %edx,%eax 

Note that line 2 is a directive to the assembler that causes the address of the 
following instruction to begin on a multiple of 16, but leaving a maximum of 7 
wasted bytes. This directive is intended to allow the processor to make optimal 
use of the instruction cache memory. 

The disassembled version of the " .on format generated by the assembler is 
as follows: 

1 8: 7e 11 
2 a: 8d b6 00 00 00 00 
3 10: 89 do 
4 12: c l f 8 0 1  
5 15: 29 c2 
6 17: 8 5 d 2  
7 19: 7f €5 
8 lb: 8 9 d O  

j le 
lea 
mov 
sar 
sub 
test 
jg 
mov 

lb <silly+Oxlb> T a r g e t  = dest2 

Ox0 i%esi) ,%esi Added n o p s  
%edx, %eax destl: 

$ 0 ~ 1 ,  %eax 
%eax, %edx 
%edx, %edx 
10 <sillytOxlO> T a r g e t  = destl 
%edx, %eax dest2: 

The "lea Ox0 ('kesi) , 'kesi" instruction in line 2 has no real effect. It serves 
as a 6-byte nop so that the next instruction (line 3) has a starting address that is a 
multiple of 16. 

In the annotations generated by the disassembler on the right, the jump tar- 
gets are indicated explicitly as Oxlb for instruction 1 and 0x10 for instruction 
7. Looking at the byte encodings of the instructions, however, we see that the 
target of jump instruction 1 is encoded (in the second byte) as 0x11 (decimal 17). 
Adding this to Oxa (decimal lo), the address of the following instruction, we get 
jump target address Oxlb (decimal 27), the address of instruction 8. 

Similarly, the target of jump instruction 7 is encoded as Oxf 5 (decimal -11) 
using a single-byte, two's complement representation. Adding this to Oxlb (dec- 
imal 27), the address of instruction 8, we get Ox10 (decimal 16), the address of 
instruction 3. 

As these examples iilustrate, the value of the program counter when perform- 
ing PC-relative addressing is the address of the instruction following the jump, not 
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that of the jump itself. This convention dates back to early implementations, when 
the processor would update the program counter as its first step in executing an 
instruction. 

The following shows the disassembled version of the program after linking: 

j le 
lea 
mov 
sar  
sub 
test 
j g 
mov 

The instructions have been relocated to different addresses, but the encodings 
of the jump targets in lines 1 and 7 remain unchanged. By using a PC-relative 
encodingof the jump targets, the instructions can be compactly encoded (requiring 
just two bytes), and the object code canbe shifted todifferent positionsinmemory 
without alteration. 

In the following excerpts from a disassembled binary, some of the informa- 
tion has been replaced by x's. Answer the following questions about these 
instructions: 

A. What is the target of the j be instruction below? 

8048dlc: 76 da jbe XXXM(X 
8048dle: eb 24 jmp 8048d44 

B. What is the address of the mov instruction? 

XXXXXXX: eb 54 jmp 8048444 
XXXXXXX: c7 45 f8 10 00 rnov SOxlO,Oxfffffff8(%ebp) 

C. In the code that follows, the jump target is encoded in PC-relative form 
as a Cbyte, two's complement number. The bytes are listed from least 
significant to most, reflecting the little-endian byte ordering of IA32. What 
is the address of the jump target? 

8048902: e9 cb 00 00 00 jmp XXXXXXX 
804890:: 90 nap 

D. Explain the relation between the annotation on the right and the byte 
codingonthe left. Both lines are part of the encodingof the jmpinstruction. 

I 80483f0: ff 25 eO a2 04 jmp *Ox804a2eO 
80483f5: 08 
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To implement the control constructs of C, the compiler must use the different 
types of jump instructions we have just seen. We will go through the most common 
constructs, starting from simple conditional branches, and then considering loops 
and switch statements. 

3.6.4 Translating Conditional Branches 

Conditional statements in C are implemented using combinations of conditional 
and unconditional jumps. For example, Figure 3.12 shows the C code for a function 
that computes the absolute value of the difference of two numbers (a). Gcc 
generates the assembly code shown as (c). We have created a version in C, called 
gotodif f (b), that more closely follows the control flow of this assembly code. 
It uses the goto statement in C, which is similar to the unconditional jump of 
assembly code. The statement goto less on line 6 causes a jump to the label 
less on line 9, skipping the statement on line 7. Note that using go to statements 

1 int gotodiff(int x, int y) 
2 ( 

code/asm/abs.c 

1 int absdiffiint x, int y) 
2 ( 
3 if (X < y) 
4 return y - x; 
5 else 
6 return x - y: 
7 1 

code/asm/abs.c 

(a) Original C code. 

3 int rval; 
4 
5 if (X < y) 
6 goto less; 
7 rval = x - y; 
8 goto done; 
9 less: 
10 rval = y - x; 
11 done: 
12 return rval; 
13 I 

(b) Equivalent goto version of (a). 

movl 8(%ebp),%edx 
movl 12 (%ebp) , %eax 
cmpl %eax,%edx 
jl .L3 
subl %eax, %edx 
movl %edx, %eax 
jmp .L5 

. L 3 :  
subl %edx,%eax 

. L5 : 

G e t  x 

Get  y 
compare x:y 
I f  <, g o t o  leaa 
compute  x-y 
S e t  a s  r e t u r n  v a l u e  
Goto  done 

less: 
Compute y-x a s  r e t u r n  v a l u e  

done: Beg in  c o m p l e t i o n  c o d e  

(c) Generated assembly code. 

Figure 3.12 Compilation of conditional statements. C procedure absdif f (a) contains an if-else statement. The 
generated assembly code is shown (c), along with a C procedure gotodiff (b) that mimics the control flow of the 
assembly code. The stack set-up and completion portions of the assembly code have been omitted. 
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is generally considered a bad programming style, since their use can make code 
very difficult to read and debug. We use them in our presentation as a way to 
construct C programs that describe the control flow of assembly-code programs. 
We call such C programs "goto code." 

The assembly code implementation Erst compares the two operands (line 3), 
setting the condition codes. If the comparison result indicates that x is less than y, 

it then jumps to a block of code that computes y-x (line 9). Otherwiseit continues 
with the execution of code that computes x-y (lines 5 and 6). In both cases the 
computed result is stored in register %eax, and ends up at line 10, at which point 
it executes the stack completion code (not shown). 

The general form of an if-else statement in Cis given by the template 

i f  (test-expr) 
then-statement 

else 
else-statement 

where test-expr is an integer expression that evaluates either to 0 (interpreted as 
meaning "false") or to a nonzero value (interpreted as meaning "true"). Only 
one of the two branch statements (then-statement or else-statement) is executed. 

For this general form, the assembly implementation typically adheres to the 

1 following form, where we use C syntax to describe the control flow: 

t = test-expr; 
if (t) 

goto  t r u e ;  
else-statement 
g o t o  done; 

t r u e :  
then-statement 

done : 

, 
I 

That is, the compiler generates separate blocks of code for then-statement and 
else-statement. It inserts conditional and unconditional branches to make sure the 
correct block is executed. 

e Q r 6 h  3.9 
When given the C code 

code/asdsimple-rfc 

1 void cond(int a ,  int *P)  
2 { 
3 i f  (p & & a  > 0) 
4 *p += a; 
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I occ generates the following assembly code: 

movl 8(%ebp),%edx 
movl 12(%ebp),%eax 
testl %eax,%eax 
je .L3 
testl %edx,%edx 
jle .L3 
add1 %edx,(%eax) 

. L3 : 

A. Write a goto version in C that performs the same computation and mimics 
the control flow of the assembly code, in the style shown in Figure 3.12(b). 
You might find it helpful to first annotate the assembly code as we have 
done in our examples. 

B. Explain why the assembly code contains two conditional branches, even 
though the C code has only one if statement. 

3.6.5 Loops 

C provides several looping constructs, namely while, for, and do-while. No 
correspondinginstructions exist in assembly. Instead, combinations of conditional 
tests and jumps are used to implement the effect of loops. Interestingly, most 
compilers generate loop code based on the do-while form of a loop, even though 
this form is relatively uncommon in actual programs. Other loops are transformed 
into do-while form and then compiled into machine code. We will study the 
translation of loops as a progression, starting with do-while and then working 
toward ones with more complex implementations. 

Do-While Loops 

The general form of a do-while statement is as follows: 

do 
body-statement 
while (test-expr) ; 

The effect of the loop is to repeatedly execute body-statement, evaluate test-expr, 
and continue the loop if the evaluation result is nonzero. Observe that body- 
statement is executed at least once. 

Qpically, the implementation of do-while has the following general form: 

loop: 
body-statement 
t = test-expr; 
if (t) 
got0 loop; 



Section 3.6 Control 159 

As an example, Figure 3.13 shows an implementation of a routine to compute the 
nth element in the Fibonacci sequence using a do-while loop. This sequence is 
defined by the following recurrence: 

For example, the first ten elements of the sequence are 1,1,2,3,5,8,13,21, 34, 
and 55. To implement this using a do-while loop, we have started the sequence 
with values Fo = 0 and Fl = 1, rather than with F1 and F2. 

int fib-dw(int n) 
{ 

int i = 0; 
int val = 0; 
int nval = 1; 

do I 
int t = val + nval; 
val = nval; 
nval = t; 
i++ ; 

) while I i  i nl; 

return val: 
1 

coddasm/Fb.c 
(a) C code. 

1 .L6 :  loop: 
leal (%edx, %ebx) , %eax compute t = va l  t nval  

i 
n 

val 

nval 

t 

3 movl %edx,%ebx copy nval  t o  va l  
4 movl %eax,%edx Copy t t o  nval  
5 incl %ecx Increment i 
6 cmpl %esi,%ecx Compare i : n  
7 jl .L6 If l e s s ,  goto loop 
8 movl %ebx,%eax S e t  va l  as r e t u r n  va lue  

(b) Corresponding assembly language code. 

Figure 3.13 C and assembly code for do-while version of Fibonacci program. Only the 
code inside the loop is shown. 
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The assembly code implementing the loop is also shown, along with a table 
showing the correspondence between registers and program values. In this ex- 
ample, body-statement consists of lines 8 through 11, assigning values to t, val ,  
and nval, along with the incrementing of i. These are implemented by lines 2 
through 5 of the assembly code. The expression i < n comprises test-expr; This 
is implemented by line 6 and by the test condition of the jump instruction on line 
7. Once the loop exits, val  is copy to register Beax as the return value (line 8). 

Creating a table of register usage, such as we have shown in Figure 3.13(b) is 
a very helpful step in analyzing an assembly language program, especially when 
loops are present. 

For the C code 

1 int dw-loop(int x, int y, int n) 
2 I 
3 do I 
4 x += n; 
5 y *= n; 
6 n--. 
7 ) while ((n > 0 )  & (y < n)); I *  Note use of bitwise ' h '  * I  
8 return x; 

9 1 

GCC generates the following assembly code: 

I n i t i a l l y  x ,  y, and n a r e  a t  o f f s e t s  8 ,  1 2 ,  and 16 from %ebp 

movl 8 (%ebpl , %esi 
movl 12 (%ebp) , %ebx 
movl 16(%ebp),%ecx 
.p2align 4 , , 7  I n se r t ed  t o  op t im i ze  cache performance 

. L6 : 
imull %ecx, %ebx 
add1 %ecx,%esi 
decl %ecx 
test1 %ecx,%ecx 
setg %a1 
cmpl %ecx, %ebx 
set1 %dl 
and1 %edx,%eax 
testb $l,%al 
jne .L6 

A. Make a table of register usage, similar to the one shown in Figure 3.13(b). 

B. Identify test-expr and body-statement in the C code, and the corresponding 
lines in the assembly code. 

C. Add annotations to the assembly code describing the operation of the pro- 
gram, similar to those shown in Figure 3.13(b). 
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While Loops 
The general form of a w h i l e  statement is as follows: 

while (test-expr) 
body-sta tement 

It differs from do-while in that test-expr is evaluated and the loop is potentially 
terminated before the first execution of body-statement. A direct translation into 
a form using g o t o  would be 

loop:  
t = test-expr; 
i f  (!tl 

g o t o  done; 
body-statement 
g o t 0  loop;  

done : 

This translation requires two control statements within the i ~ e r  l o o p t h e  
part of the code that is executed the most. Instead, most C compilers transform 
the code into a do-while loop by using a conditional branch to skip the first 
execution of the body if needed: 

i f  ( ! test-expr ) 
g o t o  done; 

do 
body -statement 
while (test-expr) ; 

done : 

This, in turn, can be transformed into goto code as 

t = test-expr; 
i f  ( ! t )  

go to  done; 
loop  : 

body-statement 
t = test-e.rpr; 
i f  ( t )  

g o t 0  l oop ;  
done : 

As an example, Figure 3.14 shows an implementation of the Fibonacci se- 
quence function using a while loop (a). Observe that this time we have started 
the recursion with elements Fl (val) and Fz (nval) .  The adjacent C function 
fib-w-goto (b) shows how this code has been translated into assembly. The as- 
sembly codein (c)closely follows the Ccode shownin f ib-w-goto. The compiler 
has performed several interesting optimizations, as can be seen in the goto code 
(b). First, rather than using variable i as a loop variable and comparing it t o n  on 
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each iteration, the compiler has introduced a new loop variable that we call "nmi", 
since relative to the original code, its value equals n - i .  This allows the compiler 
to use only three registers for loop variables, compared to four otherwise. Sec- 
ond, it has optimized the initial test condition ( i  < n) into (val  < n) , since 
the initial values of both i and val are I. By this means, the compiler has totally 

coddasmyib.~ 

1 int fib-w(int n) 
2 I 
3 int i = 1; 
4 int val = 1; 
5 int nval = 1; 
6 
7 while (i < n) { 

8 int t = val+nval; 
9 val = nval; 
10 nval = t; 
11 i++; 
12 I 
13 
14 return val; 
1 5  1 

coddasmyib.~ 

(a) C code. 

1 %ebx val 1 1 1 l1 

) %ecx nval ) I l2 
13 

- coddasm/fib.c 

1 int fib-w-goto(int n) 
2 1 
3 int val = 1: 
4 int nval = 1; 
5 int m i ,  t; 
6 

7 if (val >= n) 
8 goto done; 
9 m i  = n-1; 
10 

11 loop: 
12 t = val+nval; 
13 val = nval; 
14 nval = t; 
15 mi--; 
16 if (mi) 
17 goto loop; 
18 

19 done: 
2 0 return val: 
21 1 

codp/asm/fib.c 

(b) Equivalent goto version of (a). 

movl 8(%ebp),%eax Get n 

movl $l,%ebx S e t  va l  t o  1 

movl $l,%ecx S e t  nva l  t o  1 

cmpl %eax,%ebx Compare v a l  : n  

jge . L9  1f >= goto  done 

leal -l(%eax),%edx mi = n-1 

. L10 : 1 oop : 

leal (%ecx, %ebx) , %eax Compute t = n v a l t v a l  

movl %ecx, %ebx S e t  va l  t o  nva l  

movl %eax,%ecx S e t  nva l  t o  t 
decl %edx Decrement mi 
jnz .L10 if != 0, go to  loop 

.L9: done: 

(c) Corresponding assembly language code. 

'Figure 3.14 C and assembly code for while version of Fibonacci. The compiler has performed a number of 
optimizations, including replacing the value denoted by variable i with one we call mi. 
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eliminated variable i. Often the compiler can make use of the initial values of 
the variables to optimize the initial test. This can make deciphering the assembly 
codetricky. Third, for successive cxecutions of the loop we are assured that i 5 n, 
and so thecompiler can assume that nmi is nonnegative. As a result, it can test the 
loop condition as mi ! = 0 rather than mi >= 0. This saves one instruction 
in the assembly code. 

I For the following C code: 

1 int loop-while(int a, in: b) 
2 ( 
3 int i = 0; 
4 int result = a; 
5 while (i < 256) ( 

6 result += a; 
7 a -= b; 
8 i t= b; 
9 I 
10 return result; 
11 I 

GCC generates the following assembly code: 

I n i t i a l l y  a  aad b are a t  offsets 8 and 12 from %ebp 
movl E(%ebp),%eax 
movl 12(%eSp),%ebx 
xorl %ecx,%ecx 
movl %eax,%edx 
.p2align 4, , 7  

. L5 : 
add1 %eax,%edx 
sub1 %ebx,%eax 
add1 %ebx,%ecx 
cmpl $255,%ecx 
jle . L 5  

A. Make a table of register usage within the loop body, similar to the one 
shown in Figure 3.14(c). 

B. Identify test-expr and body-statement in the C code, and the correspond- 
ing limes in the assembly code. What optimizations has the C compiler 
performed on the initial test? 

C. Add annotations to the assembly code describing the operation of the pro- 
gram, similar to those shown in Figure 3.14(c). 

D. Write a goto version (in C) of the function that has similar structure to the 
assembly code, as was done in Figure 3.14(b). 
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For Loops 

The general form of a f o r  loop is as follows: 

f o r  (init-expr ; test-expr; update-expr ) 
body -statement 

The C language standard states that the behavior of such a loop is identical to the 
following code, which uses a w h i l e  loop: 

init-expr ; 
w h i l e  (test-expr) I 

body -statement 
update-expr ; 

That is, the program first evaluates the initialization expression init-expr. It then 
enters a loop where it first evaluates the test condition test-expr, exiting if the test 
fails, then executes the body of the loop body-statement, and finally evaluates the 
update expression update-expr. 

The compiled form of this code is based on the transformation from while 
to do-whi le  described previously, first giving a d o - w h i l e  form: 

init-expr ; 
i f  ( ! test-expr ) 

g o t o  d o n e ;  
do I 

body -statement 
update-expr ; 

1 while (test-expr) ; 
done : 

This, in turn, can be transformed into goto code as 

init-expr ; 
t = test-expr; 
i f  ( ! t )  

g o t o  done;  
l o o p :  

body -statement 
update-expr ; 
t = test-expr; 
i f  ( t )  

g o t 0  l o o p ;  
done : 
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As an example, the following code shows an implementation of the Fibonacci 
function using a f o r  loop: 

int f ib-f (int n) 
{ 

int i; 
int val = 1; 
int nval = 1; 

for (i = 1; i < n; it+) { 
int t = valtnval; 
val = nval; 
nval = t; 

) 

return val; 
1 

The transformation of this code into the while  loop form gives code identical to 
that for the function f ib-w shown in Figure 3.14. In fact, GCC generates identical 
assembly code for the two functions. 

I Consider the following assembly code: 

I n i t i a l l y  x ,  y, and n are  o f f s e t s  8 ,  12,  and 16 from %ebp 
movl 8(%ebp),%ebx 
movl 16 (%ebp) , %edx 
xorl %eax,%eax 
decl %edx 
js .L4 
movl %ebx, %ecx 
irnull 12 (%ebp), %ecx 
.paalign 4,, 7 Inser ted  t o  optimize cache performance 

.L6: 
add1 %ecx,%eax 
sub1 %ebx, %edx 
jns .L6 

. L4 : 

I The precedingcode was generated by compiling C code that had the following 
overall form: 
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i n t  l o o p ( i n t  x, i n t  y,  i n t  n )  

i n t  r e s u l t  = 0 ;  
i n t  i; 
f o r ( i = ; i - ; i = - )  { 

r e s u l t  += ; 

1 
r e t u r n  r e s u l t ;  

1 

Your task is to fill in the missing parts of the C code to get a program equivalent 
to thegeneratedassembly code. Recall that the result of the functionis returned 
in register Sieax. To solve this problem, you may need to do a bit of guessing 
about register usage and then see whether that guess makes sense. 

A. Which registers hold program values r e s u l t  and i ?  

B. What is the initial value of i ?  

C. What is the test condition on i ?  

D. How does i get updated? 

E. The C expression describing how to increment r e s u l t  in the loop body 
does not change value from one iteration of the loop to the next. The 
compiler detected this and moveditscomputation to before the loop. What 
is the expression? 

F Fill in all the missing parts of the C code. 

3.6.6 Switch Statements 

Switch statements provide a multiway branching capability based on the value of 
an integer index. They are particularly useful when dealing with tests where there 
can be a large number of possible outcomes. Not only do they make the C code 
more readable, they also allow an efficient implementation using a data structure 
called a jump table. A jump table is an array where entry i is the address of a 
code segment implementing the action the program should take when the switch 
index equals i .  The code performs an array reference into the jump table using 
the switch index to determine the target for a jump instruction. The advantage of 
using a jump table over a long sequence of if-else statements is that the time taken 
to perform the switch is independent of the number of switch cases. Gcc selects 
the method of translating a switch statement based on the number of cases and 
the sparsity of the case values. Jump tables are used when there are a number of 
cases (e.g., four or more) and they span a small range of values. 

Figure3.15(a) showsan example of a C  s w i  tchstatement. This example has a 
number of interesting features, including case labels that do not span a contiguous 
range (there are no labels for cases 101 and 105), cases with multiple labels (cases 
104 and 106), and cases that fall through to other cases (case 102), because the 
code for the case does not end with a b r e a k  statement. 
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code/asm/switch.c 
1 int switch-eg(int x )  
2 ( 
3 int result = x; 
4 
5 switch (x) [ 
6 
7 case 100: 
8 result *= 13; 
9 break; 
10 

11 case 102: 
12 result += 10; 
13 i *  Fall through *! 
14 
15 case 103: 
16 result += 11: 
17 break; 
18 

19 case 104: 
20 case 106: 
21 result *= result; 
22 break; 
23 

24 default : 
2 5 result = 0; 
2 6 1 
27 

2 8 return result; 
29 1 
- c o d d ~ s d s w i t c h . ~  

(a) Switch statement. 

1 I *  Next line is not legal c * I  
2 code *jt[7] = ( 
3 10c-A~ loc-def, locB, loc-C, 
4 lot-D, loc-def, loc-D 
5 1 ;  
6 
7 int switch-eg-impl(int x) 
8 ( 
9 unsigned xi = x  - 100; 
10 int result = x; 
11 
12 if [xi > 6) 
13 goto loc-def; 
1 4  
15 I *  Next goto is cot legal c *! 
16 goto jt [xi] ; 
17 
18 loc-A: I *  Case 100 * I  
19 result *= 13; 
20 goto done; 
2 1 
22 loc-B: / *  Case 102 * /  
2 3 result += 1 0 ;  
2 4 I *  Fall through *! 
2 5 
26 10'2-C: I *  Case 103 * I  
27 result += 11; 
i 8 goto done; 
i 9 

30 10~-D: / *  Cases 104, 106 * /  
3 1 result *=  result; 
32 goto done; 
33 
34 loc-def: I* Default case * I  

35 result = 0; 
3 6 
37 done: 
38 return result; 
39 I 

coddasm/switch.c 

(b) Translation into extended C. 

Figure 3.15 Switch statement example with translation into extended C. The translation shows the structure of 
jump table j t and how it is accessed. Such tables and accesses are not actually allowed in C. 

Figure 3.16 shows the assembly code generated when compiling switch-eg. 
The behavior of this code is shown using an extended form of C as the procedure 
switch-eg-imp1 in Figure 3.15(b). We say "extended because C does not 
provide the necessary constructs to support this style of jump table, and hence our 
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code is not legal C. The array j t contains 7 entries, each of which is the address 
of a block of code. We extend C with a data type code for this purpose. 

Lines 1 to 4 set up the jump table access. To make sure that values of x that 
are either less than 100 or greater than 106 cause the computation specified by 
the default case, the code generates an unsigned value xi equal to x-100. For 
values of x between 100 and 106, xi will have values 0 through 6. All other values 
will be greater than 6, since negative values of x-100 will wrap around to be 
very large unsigned numbers. The code therefore uses the j a (unsigned greater) 
instruction to jump to code for the default case when xi is greater than 6. Using 
j t to indicate the jump table, the code then performs a jump to the address at 
entry x i  in this table. Note that this form of goto is not legal C. Instruction 4 
implements the jump to an entry in the jump table. Since it is an indirect jump, 
the target is read from memory. The effective address of the read is determined 

S e t  up t h e  jump t a b l e  access  
leal -100 (%edx) , %eax 
cmpl $6,%eax 
ja .L9 
jmp *.L10 (,%eax,4) 

Case I00 
.L4: 
leal (%edx,%edx,2),%eax 
leal (%edx,%eax,4),%edx 
jmp .L3 

Case 102 
. L5 : 
add1 $lO,%edx 

Case 103 
. L6 : 
add1 $ll,%edx 
jmp .L3 

Cases 104, 106 
. L8 : 
imull %edx,%edx 
jmp .L3 

Defaul t  ca se  
. L9 : 
xorl %edx,%edx 

Return r e s u l t  
. L3 : 
movl %edx,%eax 

Compute xi = x-100 
Compare xi : 6  
i f  >, goto  loc-def 
Goto j t l x i l  

l0C-A: 

Compute 3 *x 
Compute x+4 ' 3  *x 
Goto done 

loc-B: 
r e s u l t  += 10,  Fal l  through 

10c-c: 
r e s u l t  += 11 
Goto done 

loc-D: 
r e s u l t  *= r e s u l t  
Goto done 

loc-def: 
r e s u l t  = 0  

done : 
Se t  r e s u l t  a s  r e t u r n  va lue  

Figure 3.16 Assembly code for switch statement example in Figure 3.15. 
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by adding the base address specified by label . L10 to the scaled (by 4 since each 
jump table entry is 4 bytes) value of variable xi (in register Beax). 

In the assembly code, the jump tableisindicated by the following declarations, 
to which we have added comments: 

Align address  t o  m u 1  t i p l e  o f  4 

Case 100: l o c q  

Case 101: loc-def 

Case 102: loc-B 

Case 103: loc-C 

Case 104: loc-D 

Case 105: loc-def 

Case 106: loc-D 

These declarations state that within the segment of the object code file called 
". rodata" (for "Read-Only Data"), there should be a sequence of seven "long" 
(4-byte) words, where the value of each word is given by the instruction address 
associated with theindicated assembly code labels (e.g., . ~ 4 ) .  Label . ~ 1 0  marks 
the start of this allocation. The address associated with this label serves as the 
base for the indirect jump (instruction 4). 

The code blocks starting with labels locA through locD and loc-def in 
switch-eg-imp1 (Figure 3.15(b)) implement the five different branches of the 
switch statement. Observe that the block of code labeled loc-def will be exe- 
cuted either when x is outside the range 100 to 106 (by the initial range checking) 
or when it equals either 101 or 105 (based on the jump table). Note how the code 
for the block labeled loc-E! falls through to the block labeled lot-C. 

In the Cfunction that follows, we have omitted the body of the switch statement. 
In the C code, the case labels did not span a contiguous range, and some cases 
had multiple labels. 

i n t  switch2 ( i n t  x) { 

i n t  result = 0 ;  
switch (x) { 

I* Rody of switch statement omitted ' I  
1 

I r e t u r n  r e s u l t ;  

In compiling the function, GCC generates the assembly code that follows for the 
initial part of the procedure and for the jump table. Variable x is initially at 
offsct 8 relative to register %ebp. 
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Jump table f o r  switch2 
1 .L11: 
2 .long .L4 

Setting up jump table access 3 .long .L10 
1 movl 8 (8ebp) , %eax Retrieve x 4 .long .L5 
2 add1 $2,%eax 5 .long .L6 
3 cmpl $6,%eax 6 .long .L8 
4 ja .L10 7 .long .L8 
5 jmp *.Lll(,%eax,4) 8 .long .L9 

1 Use the foregoing information to answer the following questions: 

A. What were the values of the case labels in the switch statement body? 

B. What cases had multiple labels in the C code? 

3.7 Procedures 

A procedure call involves passing both data (in the form of procedure parameters 
and return values) and control from one part of the code to another. In addition, it 
must allocate space for the local variables of the procedure on entry and deallocate 
them on exit. Most machines, including IA32, provide only ~irn~l~instructions for 
transferring control to and fromprocedures. The passing of data and the allocation 
and deallocation of local variables is handled by manipulating the program stack. 

3.7.1 Stack Frame Structure 

IA32 programs make use of the program stack to support procedure calls. The 
stack is used to pass procedure arguments, to store return information, to save 
registers for later restoration, and for local storage. The portion of the stack 
allocated for a single procedure call is called a stack frame. Figure 3.17 diagrams 
the general structure of a stack frame. The topmost stack frame is delimited by 
two pointers, with register % e b p  serving as the frame pointer, and register % e s p  
serving as the stack pointer. The stack pointer can move while the procedure is 
executing, and hence most information is accessed relative to the frame pointer. 

Suppose procedure p (the caller) calls procedure Q (the callee). The arguments 
to Q are contained within the stack frame for P. In addition, when p calls Q, 
the rzturn address witbin P ~ h e r c  the program should resume execution when it 
returns from Q is pushed on the stack, forming the end of P'S stack frame. The 
stack frame for Q starts with the saved value of the frame pointer (i.e., % e b p ) .  
followed by copies of any other saved register values. 

Procedure Q also uses the stack for any local variables that cannot be stored 
in registers. This can occur for the following reasons: 

There are not enough registers to hold all of the local data. 
Some of the local variables are arrays or structures and hence must be ac- 
cessed by array or stmcture references. 


