
Representing and Manipulating
Information

2.1 information Storage 28

2.2 Integer Representations 51

2.3 Integer Arithmetic 65

2.4 Floating Point 80

2.5 Summary 98

26 Chapter 2 Representing and Manipulating Information

Modern computers store and process information represented as two-valued sig-
nals. These lowly binary digits, or bits, form the basis of the digital revolution.
The familiar decimal, or base-10, representation has been in use for over 1000
years, having been developed in India, improved by Arab mathematicians in the
12th century, and brought to the West in the 13th century by the Italian mathe-
matician Leonardo Pisano, better known as Fibonacci. Using decimal notation
is natural for ten-fingered humans, but binary values work better when building
machines that store and process information. Two-valued signals can readily be
represented, stored, and transmitted, for example, as the presence or absence of a
hole in a punched card, as a high or low voltage on a wire, or as a magnetic domain
oriented clockwise or counterclockwise. The electronic circuitry for storing and
performing computations on two-valued signals is very simple and reliable, en-
abling manufacturers to integrate millions of such circuits on a single silicon chip.

In isolation, a single bit is not very useful. When we group bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate real numbers.

We consider the three most important encodings of numbers. Unsigned en-
coding~ are based on traditional binary notation, representing numbers greater
than or equal to 0. Two's-complement encodings are the most common way to
represent signed integers, that is, numbers that may be either positive or nega-
tive. Floating-point encodings are a base-two version of scientific notation for
representing real numbers. Computers implement arithmetic operations, such as
addition and multiplication, with these different representations, similar to the
corresponding operations on integers and real numbers.

Computer representations use a limited number of bits to encode a number,
and hence some operations can overflow when the results are too large to be
represented. This can lead to some surprising results. For example, on most of
today's computers,computing the expression

yields -884,901,888. This runs counter to the properties of integer arithmetic-
computing the product of a set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
and commutative, so that computing any of the following C expressions yields
-884,901,888:

The computer might not generate the expected result, but at least it is consistent!

Floating-point arithmetic has altogether different mathematical properties.
The product of a set of positive numbers will always be positivc, although overflow
will yield the special value +oo. On the other hand, floating-point arithmetic is
not associative due to the finite precision of the representation. For example, the
Cexpression (3 . 1 4 t l e 2 0) -1e2O willevaluate to 0 . 0 onmostmachines,while
3 . ;4+(le2O-le20) willevaluateto3.14.

By studying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This understanding is critical to writing programs that work correctly
over the full range of numeric values and that are portable across different com-
binations of machine, operating system, and compiler.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with these representations as you progress
into machine-level programming in Chapter 3. We describe these encodings in
this chapter and give you some practice reasoning about number representations.

We derive several ways to perform arithmetic operations by directly manipu-
lating the bit-level representations of numbers. Understanding these techniques
will be important for understanding the machine-level code generated when com-
piling arithmetic expressions.

Our treatment of this material is very mathematical. We start with the ba-
sic definitions of the encodings and then derive such properties as the range of
representable numbers, their bit-level representations, and the properties of the
arithmeticoperations. We believe it is important for you to examine this material
from such an abstract vicwpoint, because programmers need to have a solid un-
derstanding of how computer arithmetic relates to the more familiar integer and
real arithmetic. Although it may appear intimidating, the mathematical treat-
ment requires just an understanding of basic algebra. We recommend you work
the practice problems as a way to solidify the connection between the formal
treatment and some real-life examples.

Aside: How to read this chapter.

If you find equations and formulas daunting, do not let that stop you from getting the most out of this
chapter! We provide full derivations of mathematical ideas for completeness, but the best way to read this
material is often to skip over the derivation on your initial reading. Instead, try working out a few simple
examples (for example, the practice problems) to build your intuition, and then see how the mathematical
derivation reinforces your intuition.

The C t t programminglanguage is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C t t . The Java language definition, on the other hand, created a new set of
standards for numeric representations and operations. Whereas the C standard
is designed to allow a wide range of implementations, the Java standard is quite
specific on the formats and encodings of data. We highlight the representations
and operations supported by Java at several places in the chapter.

28 Chapter 2 Representing and Manipulating Information

2.1 Information Storage

Rather than accessing individual bits in a memory, most computers use blocks
of eight bits, or bytes, as the smallest addressable unit of memory. A machine-
level program views memory as a very large array of bytes, referred to as virtual
memory. Every byte of memory is identified by a unique number, known as its
address, and the set of all possible addresses is known as the virtual address space.
As indicated by its name, this virtual address space is just a conceptual image
presented to the machine-level program. The actual implementation (presented
in Chapter 10) uses acombination of random-accessmemory (RAM), disk storage,
special hardware, and operating system software to provide the program with what
appears to be a monolithic byte array.

One task of a compiler and the run-time system is to subdivide this memory
space into more manageable units to store the different program objects, that
i s program data, instructions, and control information. Various mechanisms are
used to allocate and manage the storage for different parts of the program. This
management is all performed within the virtual address space. For example, the
value of a pointer in C-whether it points to an integer, a structure, or some other
program unit-is the virtual address of the first byte of some block of storage.
The C compiler also associates type information with each pointer, so that it can
generate different machine-level code to access the value stored at the location
designated by the pointer depending on the type of that value. Although the
C compiler maintains this type information, the actual machine-level program it
generates has no information about data types. It simply treats each program
object as a block of bytes, and the program itself as a sequence of bytes.

New to C?: The role of pointers in C. .
Pointers are a central feature of C. They provide the mechanism for referencing elements of data structures,
including arrays. Just like a variable, a pointer has two aspects: its value and its type. The value indicates
the location of some object, while i t s type indicates what kind of object (e.g., integer or floating-point
number) is stored at that location.

2.1.1 Hexadecimal Notation

A single byte consists of eight bits. In binary notation, its value ranges from
000000002 to 111111112. When viewed as a decimal integer, its value ranges
from 010 to 25510. Neither notation is very convenient for describing bit patterns.
Binary notation is too verbose, while with decimal notation, it is tedious to convert
to and from bit patterns. Instead, we write bit patterns as base-16, or hexadecimal
numbers. Hexadecimal (or simply "Hex") uses digits '0' through '9,' along with
characters 'A' through 'F' to represent 16 possible values. Figure 2.1 shows the
decimal and binary values associated with the 16 hexadecimal digits. Written in
hexadecimal, the value of a single byte can range from OOI6 to FF16.

In C, numeric constants starting with Ox or OX are interpreted as being in
hexadecimal. The characters 'A' through 'F' may be written either upper or
lower case. For example, we could write the number FA1D37B16 as O X F A ~ D ~ ~ B ,

Section 2.1 Information Storage 29

Figure 2.1 Hexadecimal notation. Each Hex digit encodes one of 16 values,

7 1 Hex dig-

as Oxfald37b, or even mixing upper and lower case, e.g., OxFalD37b. We will
use the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually con-
vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that shown in Figure 2.1. One simple trick for doing the conver-
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.
The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three.

For example, suppose you are given the number Oxl73A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follows:

Decimal value

Binary value

Hexadecimal 1 7 3 A 4 c

Binary OOO1 0111 0011 1010 0100 1100

This gives the binary representation 000101110011101001001100.
Conversely, given abinary number 1111001010110110110011 youconvert it to

hexadecimal by first splitting it into groups of four bits each. Note, however, that
if the total number of bits is not a multiple of four, you should make the leftmost
group be the one with fewer than four bits, effectively padding the number with
leading 0s. Then you translate each group of four bits into the corresponding
hexadecimal digit:

8

8

1000

Binary 11 1100 1010 1101 1011 0011

Hexadecimal 3 C A D B 3

Perform the following number conversions:

A. Ox8F7A93 to binary.

B. Binary 1011011110011100 to hexadecimal.

9

9

1001

v

B
11

1011

A ---
10

1010

C

12

1100

D -

13

1101

E --
14

1110

-
_"J

15
-

1111

30 Chapter 2 Representing and Manipulating Information

C. OxC4E5D to binary.

D. Binary 11O1011011011111100110 to hexadecimal.

When a value x is a power of two, that is, x = 2" for some n , we can readily
write x in hexadecimal form by remembering thal the binary rcpresentation of
x is simply 1 followed by n 0s. The hexadccimal digit 0 represents four binary
0s. So, for n written in the form i + 4 j , where 0 5 i 5 3, we can write x with a
lcading hex digit of 1 (i = 0). 2 (i = I) , 4 (i = 2), or 8 (i = 31, followed by j
hexadecimal 0s. As an example, for x = 2048 = 211, we have n = 11 = 3 t 4 .2 ,
giving hexadecimal representation 0x800.

Fill in the blank entries in the following table, giving the dccimal and hexadec-
imal representations of different powers of 2:

/ I n I (Decimal) 1 2"~exadecirnal)
--

Converting between decimal and hexadecimal representations requires using
multiplication or division to handle the gencral case. To convert a decimal number
x to hexadecimal, wc can repeatedly divide x by 16, giving a quotient q and
a remainder r , such that x = q . 16 t r. We then use the hexadecimal digit
representing r as the least significant digit and generate the remaining digits by
repeating the process on q . As an example, consider the conversion of decimal
314156:

314156 = 19634.16+ 12 (C)

From this we can read off the hexadecimal representation as Ox4CB2C.
Conversely, to convert a hexadecimal number to decimal, we can multiply

each of the hexadecimal digits by the appropriate power of 16. For example, given
the number Ox74F, we compute its decimal equivalent as 7 . 1 6 ~ t 10.16 + 15 =
7 - 256 t 10.16 + 15 = 1792 t 160 + 15 = 1967.

Section 2.1 Information Storage 31

A single byte can be represented by two hexadecimal digits. Fill in the missing
entries in the following table, giving the decimal, binary, and hexadecimal values
of different byte patterns:

I Aside: Converting between decimal and hexadecimal.

For converting larger values between decimal and hexadecimal, it i s best to let a computer or calculator do
the work. For example, the following script in the Perl language converts a list of numbersfrom decimal
to hexadecimal:

codddatald2h

1 #!/usr/local/bin/perl
2 % Convert list of decimal numbers into hex
3
4 for ($i = 0; $i < BARGV; $i++) I
5 printf("%d\t= Ox%x\nV, $ARGV[$il, $ARGV[$il l ;
6 1

codddatdd2h

I Qnce this file has been set to be executable, the command:

1 yields output:

100 = 0x64
500 = Oxlf4
751 = Ox2ef

Similarly, the following script converts from hexadecimal to decimal:

32 Chapter 2 Representing and Manipulating Information

Without converting the numbers to decimal or binary, try to solve the following
arithmetic problems, giving the answers in hexadecimal. Hint: just modify
the methods you use for performing decimal addition and subtraction to use
base 16.

2.1.2 Words

Every computer has a word size, indicating the nominal size of integer and pointer
data. Since avirtual address isencoded by such a word, the most important system
parameter determined by the word size is the maximum size of the virtual address
space. That is, for a machine with an n-bit word size, the virtual addresses can
range from 0 to 2" - 1, giving the program access to at most 2" bytes.

Most computers today have a 32-bit word size. This limits the virtual address
space to 4 gigabytes (written 4 GB), that is, just over 4 x lo9 bytes. Although
this is ample space for most applications, we have reached the point where many
large-scale scientific and database applications require larger amounts of storage.
Consequently, high-endmachines with64-bit wordsizes are becoming increasingly
commonplace as storage costs decrease.

2.1.3 Data Sizes

Computers and compilers support multiple data formats using different ways to
encode data, such as integers and floating point, as well as different lengths. For - - . .

example, many machines have instructions for manipulating single bytes, as well
as integers represented as two-, four-, and eight-byte quantities. They also support
floating-point numbers represented as four and eight-byte quantities.

Section 2.1 Information Storage 33

Figure 2.2 Sizes (in bytes) of C numeric data types. 'The number of bytes allocated varies
with machine and compiler.

C declaration
char

short i n t
i n t

long i n t
char *
float

double

The C language supports multiple data formats for both integer and floating-
point data. m e C data type char represents a single byte. Although the name
"char" derives from the fact that it is used to store a single character in a text
string, it can also be used to store integer values. The C data type i n t can also
be prefixed by the qualifiers long and shor't, providing integer representations
of various sizes. Figure 2.2 shows the number of bytes allocated for various C
data types. The exact number depends on both the machine and the compiler.
We show two representative cases: a typical 32-bit machine, and the Compaq
Alpha architecture, a 64-bit machine targeting high end applications. Most 32-bit
machines use the allocations indicated as "typical." Observe that "short" integers
have two-byte allocations, while an unqualified i n t is 4 bytes. A "long" integer
uses the full word size of the machine.

Figure 2.2 also shows that a pointer (e.g., a variable declared as being of type
"char *") uses the full word size of the machine. Most machines also support
two different floating-point formats: single precision, declared in C as f l oa t ,
and double precision, declared in C as double. These formats use four and eight
bytes, respectively.

New to C?: Declaring pointers.

Typical 32-bit
pp

1
2
4
4
4
4
8

For any data type T, the declaration

Compaq Alpha
1
2
4

8
8
4
8

indicates that p is a pointer variable, pointing to an object of type T . For example

char *p;

is the declaration of a pointer to an object of type char

Programmers should strive to make their programs portable across different
machines and compilers. One aspect of portability is to make the programinsensi-
tive to the exact sizes of the different data types. The C standard setslower bounds
on the numeric ranges of the different data types, as will be covered later, but there

34 Chapter 2 Representing and Manipulating Information

are no upper bounds. Since 32-bit machines have been the standard for the last 20
years, many programs have been written assuming the allocations listed as "typical
32-bit" in Figure 2.2. Given the increasing prominence of 64-bit machines in the
near future, many hidden word size dependencies will show up as bugs in migrat-
ing these programs to new machines. For example, many programmers assume
that a program object declared as type int can be used to store a pointer. This
works line for most 32-bit machines but leads to problems on an Alpha.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions:
what will be the address of the object, and how will we order the bytes in memory.
In virtually all machines, a multibyte object is stored as a contiguous sequence of
bytes, with the address of the object given by the smallest address of the bytes
used. For example, suppose a variable x of type int has address 0x1 0 0, that is,
the value of the address expression &xis 0x100. ?hen the four bytes of x would
be stored inmemory locations OxlOO,0x101,0x102, and 0x103.

For ordering the bytes representing an object, there are two common conven-
tions. Consider a w -bit integer havinga bit representation [x , - ~ , x,-2, . . . , x l , x o] ,
where x,-1 is the most significant bit, and xo is the least. Assuming w is a multiple
of eight, these bits can be grouped as bytes, with the most significant byte having
bits [xu-1, xw-2, . . . , ~ ~ - 8 1 , the least significant byte having bits [x?, 1 6 , . . . , xo] ,
and the other bytes having bits from the middle. Some machines choose to store
the object in memory ordered from least significant byte to most, while other ma-
chines store them from most to least. The former convention-where the least
significant byte comes first-is referred to as linle endian. This convention is fol-
lowed by most machines from the former Digital Equipment Corporation (now
part of Compaq Corporation), as well as by Intel. The latter convention-where
the most significant byte comes first-is referred to as big endian. This conven-
tion is followed by most machines from IBM, Motorola, and Sun Microsystems.
Note that we said "most." The conventions do not split precisely along corporate
boundaries. For example, personal computers manufactured by IBM use Intel-
compatible processors and hence are little endian. Many microprocessor chips,
including Alpha and the PowerPC by Motorola, can be run in either mode, with
the byte ordering convention determined when the chip is powered up.

Continuing our earlier example, suppose the variable x of type int and at
address 0x100 has a hexadecimal value of 0x012345 67. The ordering of the
bytes within the address range 0x100 through 0x103 depends on the type of
machine:

Bie endian

Little endian
Ox100 0 x 1 0 1 0x102 0x103
7 I

Section 2.1 Information Storage 35

Note that in the word Ox01234567 the high-order byte has hexadecimal value
0x01, while the low-order byte has value 0x67.

People get surprisingly emotional about which byte ordering is the proper
one. In fact, the terms "little endian" and "big endian" come from the book
Gulliver's Travels by Jonathan Swift, where two warring factions could not agree
by which end a soft-boiled egg should be opened-the little end or the big. Just
like the egg issue, there is no technological reason to choose one byte ordering
convention over the other, and hence the arguments degenerate into bickering
about sociopolitical issues. As long as one of the conventions is selected and
adhered to consistently, the choice is arbitrary.

Aside: Origin of "endian."

Here is how Jonathan Swift, writing in 1726, described the history of the controversy between big and
little endians:

. . . Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in a most obstinate war
for six-and-thirty moons past. It began upon the following occasion. It is allowed on all hands,
that the primitive way of breaking eggs, before we eat them, was upon the larger end; but his
present majesty's grandfather, while he was a boy, going to eat an egg, and breaking it according
to the ancient practice, happened to cut one of his fingers. Whereupon the emperor his father
published an edict, commanding all his subjects, upon great penalties, to break the smaller end
of their eggs. The people so highly resented this law, that our histories tell us, there have been six
rebellions raisedon that account; wherein one emperor lost his life, and another his crown. These
civil commotions were constantly fomented by the monarchs of Blefuscu; and when they were
quelled, the exiles always fled for refuge to that empire. It is computed that eleven thousand
persons have at several times suffered death, rather than submit to break their eggs at the smaller
end. Many hundred large volumes have been published upon this controversy: but the books
of the Big-endians have been long forbidden, and the whole party rendered incapable by law of
holding employments.

In his day, Swift was satirizing the continued conflicts between England (1-illiput) and France (Blefuscu).
Danny Cohen, an early pioneer in networking protocols, first applied these terms to refer to byte ordering
[17], and the terminology has been widely adopted.

For most application programmers, the byte orderings used by their machines
are totally invisible. Programs compiled for either class of machine give identical
results. At times, however, byte ordering becomes an issue. The first is when
binary data is communicated over a network between different machines. A
common problem is for data produced by a little-endian machine to be sent to a
big-endian machine, or vice-versa, leading to the bytes within the words being in
reverse order for the receiving program. To avoid such problems, code written for
networking applications must follow established conventions for byte ordering to
make sure the sending machine converts its internal representation to the network
standard, while thereceivingmachine converts the networkstandard to its internal
representation. We will see examples of these conversions in Chapter 12.

36 Chapter 2 Representing and Manipulating Information

A second case where byte ordering becomes important is when looking at
the byte sequences representing integer data. This occurs often when inspecting
machine-level programs. As an example, the following line occurs in a file that
gives a text representation of the machine-level code for an Intel processor:

80483bd: 01 05 64 94 04 08 add Beax, Ox8049464

This line was generated by a disassembler, a tool that determines the instruction
sequence represented by an executable program file. We will learn more about
these tools and how to interpret lines such as this in the next chapter. For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 64
94 04 08 is the byte-level representation of an instruction that adds Ox8049464
to some program value. If we take the final four bytes of the sequence: 64 94
04 08, and write them in reverse order, we have 08 04 94 64. Dropping
the leading 0, we have the value 0x8049464, the numeric value written on the
right. Having bytes appear in reverse order is a common occurrence when read-
ing machine-level program representations generated for little-endian machines
such as this one. The natural way to write a byte sequence is to have the lowest
numbered byte on the left and the highest on the right, but this is contrary to the
normal way of writing numbers with the most significant digit on the left and the
least on the right.

A third case where byte ordering becomes visible is when programs are written
that circumvent the normal type system. In the C language, this can be done
using a cast to allow an object to be referenced according to a different data type
from which it was created. Such coding tricks are strongly discouraged for most
application programming, but they can be quite useful and even necessary for
system-level programming.

Figure 2.3 shows C code that uses casting to access and print the byte rep-
resentations of different program objects. We use typedef to define data type
byteqointer a; a pointer to an object of type "unsigned char." Such a
byte pointer references a sequence of bytes where each byte is considered to be
a nonnegative integer. The first routine showhytes is given the address of a
sequence of bytes, indicated by a byte pointer, and a byte count. It prints the in-
dividual bytes in hexadecimal. The C formatting directive " % . 2x" indicates that
an integer should be printed in hexadecimal with at least two digits.

New to CI: Naming data types with tmedef.

The typedef declaration in C provides a way of giving a name to a d
in improving code readability, since deeply nested type declarations can be

The syntax for typedef is exactly like that of declaring a variable, ex
rather than a variable name. Thus, the declaration of b+t&minter 'n Fi
would the declaration of a variable to type "unsigned char."

Section 2.1 Information Storage 37

code/data/show-bytesc
1 #include <stdio.h>
2
3 typedef unsigned char *bytegointer;
4
5 void show-bytestbytejointer start, int len)
6 {
7 int i;
8 for (1 = 0 ; i < len; i++)
9 printf(" %.2xW, start[i]);
10 printf ("\nn) ;

11 I
12

13 void show-int(int x)
14 {
15 show-bytes((bytegointer) &x, sizeof(int));
16
17
18 void show-float(f1oat x)
19 {

20 show-bytes((byteg0inter) &x, sizeof(f1oat)) ;

21 1
22
23 void showsointer(void *x)

24 {

2 5 show-bytes((byteg0inter) &x, sizeof(void *)) ;

26 1
codddatdxhow-bytexc

Figure 2.3 Code to print the byte representation of program objects. This code uses
casting to circumvent the type system.

38 Chapter 2 Representing and Manipulating Information

starting with '%' indicates how to format the next argument. Typical examples include '%dl to print
a decimal integer and '%f' to print a floating-point number, and '%c' to print a character having the
character code given by the argument.

New to C?: Pointers and arrays.

In function showbytes (Figure 2.3) we see the close connection between pointers and arrays, as
will be discussed in detail in Section 3.8. We see that this function has an argument s t a r t of type
byte-pointer (which has been defined to be a pointer to unsigned char), but we see the array
reference s t a r t [i] on line 9. In C, we can dereference a pointer with array notation, and we can
reference array elements with pointer notation. In this example, the reference s t a r t [i] indicates that
we want to read the byte that is i positions beyond the location pointed to by s t a r t .

Procedures show-int, show-f loa t , and show-pointer demonstrate how
to use procedure showbytes to print the byte representations of C program
objects of type i n t , f l o a t , and void *, respectively. Observe that they simply
pass showbytes a pointer &x to their argument x, casting the pointer to be of
type "unsigned char *." This cast indicates to the compiler that the program
should consider the pointer to be to a sequence of bytes rather than to an object
of the original data type. This pointer will then be to the lowest byte address used
by the object.

New to C?: Pointer creation and dereferencing.

In lines 15,20, and 25 of Figure 2.3 we see uses of two operations that are unique to C and C++. The C
"address of" operator & creates a pointer. On all three lines, the expression &x creates a pointer to the
location holding variable x. The type of this pointer depends on the type of x, and hence these three
pointers are of type i n t *, f l o a t *, and void **, respectively. (Data type void * is a special kind
of pointer with no associated type information.)

The cast operator converts from one data type to another. Thus, the cast (byte-pointer) &x
indicates that whatever type the pointer &x had before, it now is a pointer to data of type unsigned
char.

These procedures use the C operator sizeof to determine the number of
bytes used by the object. In general, the expression sizeof (T) returns the
number of bytes required to store an object of type T. Using sizeof rather
than a fixed value is one step toward writing code that is portable across different
machine types.

We ran the code shown in Figure 2.4 on several different machines, giving the
results shown in Figure 2.5. The following machines were used:

Linux: Intel Pentium I1 running Linux.
NT: Intel Pentium I1 running Windows-NT.
Sun: Sun Microsystems UltraSPARC running Solaris.
Alpha: Compaq Alpha 21164 running Tru64 Unix.

Section 2.1 Information Storage 39

code/datdshow-bytes.c
1 void test-show-bytes(int val)
2 i
3 int ival = val; .
4 float fval = (float) ival;
5 int *pval = &ival;
6 show-int(iva1);
7 show-float(fva1);
8 showqointer(pva1);
9 I

Figure 2.4 Byte representation examples. This code prints the byte representations of
sample data objects.

Our argument 12,345 has hexadecimal representation 0x00003 039. For the
int data, we get identical results for all machines, except for the byte ordering.
In particular, we can see that the least significant byte value of 0x39 is printed
first for Linux, NT, and Alpha, indicating little-endian machines, and last for Sun,
indicating a big-endian machine. Similarly, the bytes of the f l o a t data are iden-
tical, except for the byte ordering. On the other hand, the pointer values are
completely different. The different machineloperating system configurations use
different conventions for storaee allocation. One feature to note is that the Linux -
and Sun machines use four-byte addresses, while the Alpha uses eight-byte ad-
dresses.

Observe that although the floating point and the integer data both encode the
numeric value 12,345, they have very different byte patterns: 0x00003039 for
the integer, and Ox46403400 for floating point. In general, these two formats

NT
Sun

Alpha
Lmux
NT
Sun

Alnha

Machine
Linux
NT

float
float

float

int
int
int *
int *

Figure 2.5 Byte representations of different data values. Results for int and float are
identical, except for byte ordering. Pointer values are machine-dependent.

Value
12,345

Sun 12,345 int 00 00 30 39

Type
int

Bytes (hex)
39 30 00 00

12,345 int 39 30 00 00

40 Chapter 2 Representing and Manipulating Information

use different encoding schemes. If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks as follows:

This is not coincidental. We will return to this example when we study floating-
point formats.

: & :": a 'e 2.5 ct&:~r hl m
Consider the following three calls to showbytes:

int val = 0x12345678;
bytegointer valp = (bytegointer) &val;
show-bytes(valp, 1) ; ! A. *:
show-byteslvalp, 2) ; !+ B. *!
show-bytes(valp, 3) ; ! c. *!

Indicate which of the following values would be printed by each call on a little-
endian machine and on a big-endian machine.

A. Little endian: Big endian:

B. Little endian: Big endian:

C. Little endian: Big endian:

Using show-int and show-float, we determine that the integer 3490593
hashexadecimalrepresentation Ox0 0 3 5 4 3 2 1, while the floating-point number
3490593.0 has hexadecimal representation Ox4A550C84.

I A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another to maximize the number of
matching bits.

C. How many bits match? What parts of the strings do not match?

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminated by the null (having
value 0) character. Each character is represented by some standard encoding,
with the most common being the ASCII character code. Thus, i f we run our

Section 2.1 Information Storage 41

routine showbytes with arguments "12345 " and 6 (to include the terminating
character), we get the result 3 1 32 33 34 35 00. Observe that the ASCII
code for decimal digit x happens to be Ox3x, and that the terminating byte has
the hex representation 0x00. This same result would be obtained on any system
using ASCII as its character code, independent of the byte ordering and word
size conventions. As a consequence, text data is more platform-independent than
binary data.

Aside: Generating an ASCII table.

You can display a table showing the ASCII character code by executing the command man a s c i i .

7 7
What would be printed as a result of the lollowing call to showbytes?

char *s = "ABCDEF";
show-bytes i s , strlen i s) ;

Note that letters 'A' through 'z' have ASCII codes 0x41 through 0x5A.

Aside: The Unicode character set.

The ASCII character set is suitable for encoding English language documents, but it does not have much
in the way of special characters, such as the French 'F.' It is wholly unsuited for encoding documents
in languages such as Creek, Russian, and Chinese. Recently, the 1Cbit Unicode character set has been
adopted to support documents in all languages. This doubling of the character set representation enables
a very large number of different characters to be represented. The lava programming language uses
Unicode when representing character strings. Program libraries are also available for C that provide
Unicode versions of the standard string functions such as s t r l e n and strcpy.

2.1.6 Representing Code

Consider the following C function:

1 int sum(int x, int y)

2 (
3 return x + y;
4 1

When compiled on our sample machines, we generate machine code having the
following byte representations:

Linux: 55 89 e5 8b 45 Oc 03 45 08 89 ec 5d c3
m. 55 89 e5 8b 45 Oc 03 45 08 89 ec 5d c3
sun: 81 C3 EO 08 90 02 00 09
Alpha: 00 00 30 42 01 80 FA 6B

42 Chapter 2 Representing and Manipulating Information

Here we find that the instruction codings are different, except for the NT
and Linux machines. Different machine types use different and incompatible in-
structions and encodings. The NT and Linux machines both have Intel processors
and hence support the same machine-level instructions. In general, however, the
structure of an executable NT program differs from a Lmux program, and hence
the machines are not fully binary compatible. Binary code is seldom portable
across different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simply a sequence of bytes. The machine has no
information about the original source p;ogram, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we
study machine-level programming in Chapter 3.

2.1.7 Boolean Algebras and Rings

Since binary values are at the core of how computers encode, store, and manipulate
information, a rich body of mathematical knowledge has evolved around the study
of the values 0 and 1. This started with the work of George Boole around 1850
and thus is known as Boolean algebra. Boole observed that by encoding logic
values TRUE and FALSE as binary values 1 and 0, he could formulate an algebra
that captures the properties of propositional logic.

There is an infinite number of different Boolean algebras, where the simplest
is defined over the two-element set {O, 11. Figure 2.6 defines several operations in
this Boolean algebra. Our symbols for representing these operations are chosen
to match those used by the C bit-level operations, as will be discussed later. The
Boolean operation " corresponds to the logical operation NOT, denoted in propo-
sitionallogicas -. That is, wesay that -P is true when P isnot true, andvice-versa.
Correspondingly, - p equals 1 when p equals 0, and vice-versa. Boolean opera-
tion & corresponds to the logical operation Am, denoted in propositional logic
as A. We say that P A Q holds when both P and Q are true. Correspondingly,
p & q equals 1 only when p = 1 and q = 1. Boolean operation I corresponds
to the logical operation OR, denoted in propositional logic as v. We say that
P v Q holds when either P or Q are true. Correspondingly, p 1 q equals 1 when
either p = 1 or q = 1. Boolean operation corresponds to the logical operation
EXCLUSIVE-OR, denoted in propositional logic as $. We say that P $ Q holds
when either P or Q are true, but not both. Correspondingly, p A q equals 1 when
either p = 1 and q = 0,or p =0 andq = 1.

Claude Shannon, who later founded the field of information theory, first made
the connection between Boolean algebra and digital logic. In his 1937 master's

Figure 2.6
Operations of Boolean algebra. Binary
values 1 and 0 encode logic values TRUE
and FALSE, while operations ", &, 1 , and
encode logical operations NOT, AND, OR, and
EXCLUSIVE-OR, respectively.

Section 2.1 Information Storage 43

Shared ~ro~er t ies * .

/ property
Commutativity

Associativity

I Cancellation 1 - (-a) = a I - (-a) = a 1 I

Integer ring I Boolean algebra

1 Distributivity a x (b + c) = (a x b) t (a x c) a & (b) c) = . (a & b)) (a & c)

Uniaue to Rmes

1
a t b = b t a

a x b = b x a

(a t b) t c = a t (b + c)

a + O = a

a x l = a

Annihilator I a x O = O

1 Inverse I a t - a = O 1 - 1 I

a) b = b l o I

a & b = b & a

(a I b) (c = a l (b I c)

a) O = a

a & l = a

a&O=O

(a x b) x c = a x (b x c) (a & b) & c = a & (b & c)

Absorption I

Unique to Boolean Algebras

I I DeMorgan's laws 1 -
I

- (a & b) = " a / -b I

Distributivity

Figure 2.7 Comparison of integer ring and Boolean algebra. The two mathematical
structures share many properties, but there are key differences, particularly between - and -

- I a ((b & c) = (a) b) & (a l c)

thesis, he showed that Boolean algebra could be applied to the design and analysis
of networks of electromechanical relays. Although computer technology has ad-
vanced considerably since, Boolean algebra still plays a central role in the design
and analysis of digital systems.

There are many parallels between integer arithmetic and Boolean algebra, as
well as several important differences. In particular, the set of integers, denoted Z,
forms a mathematical structure known as a ring, denoted (Z, f, x , -, 0, I) , with
addition serving as the sum operation, multiplication as the product operation,
negation as the additive inverse, and elements 0 and 1 seming as the additive
and multiplicative identities. The Boolean algebra ((0,1], I , &, I, 0 , l) has similar
properties. Figure 2.7 highlights properties of these two structures, showing the
properties that are common to both and those that are unique to one or the other.
One important difference is that l a is not an inverse for a under j .

Complement I
- I a (" a = l I

44 Chapter 2 Representing and Manipulating Information

Aside: What good is abstract algebra?

Abstract algebra involves identifying and analyzing the common properties of mathematical operations in
different domains. Typically, an algebra is characterized by a set of elements, some of its key operations,
and some important elements. As an example, modular arithmetic also forms a ring. For modulus n, the
algebra is denoted (Z,, f ,, x,, -,, 0 , I) , with components defined as follows:

a x , b = a x b r n o d n

Even though modular arithmetic yields different results from integer arithmetic, it has many of the
same mathematical properties. Other well-known rings include rational and real numbers.

If we replace the OR operation of Boolean algebra by the EXCLUSIVE-OR
operation, and the complement operation " with the identity operation I-where
[(a) = a for all a-ae have a structure ((O , l) , ̂, & , I , 0 , l) . This structure is no
longer a Boolean algebra-in fact it's a ring. It can be seen to be a particularly
simple form of the ringconsistingof allintegers [O, 1, . . . , n-1) with both addition
and multiplication performed modulo n . In this case, we have n = 2. That is, the
Boolean AND and EXCLUSIVE-OR operations correspond to multiplication and
addition modulo 2, respectively. One curious property of this algebra is that
every element is its own additive inverse: a A I (a) = a a = 0 .

Aside: Who, besides mathematicians, care about Boolean rings?

Every time you enjoy the clarity of music recorded on a CD or the quality of video recorded on a DVD,
you are taking advantage of Boolean rings. These technologies rely on error-correcting codes to reliably
retrieve the bits from a disk even when dirt and scratches are present. The mathematical basis for these
error-correcting codes 1s a linear algebra based on Boolean rings.

We can extend the four Boolean operations to also operate on bit vectors,
i.e., strings of 0s and 1s of some fixed length w . We define the operations over
bit vectors according their applications to the matching elements of the argu-
ments. For example, we define a,-2,. . . , ao] ti [bW-1, . .. , bo] to be
[aW-l & bW-l, a,-2 & bu, -2 , a0 & bo], and similarly for operations ", I , and
^ . Letting { O , lJW denote the set of all strings of 0s and 1s having length w , and
a" denote the string consisting of w repetitions of symbol a , then one can see
that the resulting algebras: ((0, I] " , 1 , &, " , O u t , l W) and ({0 , " , & , I , O W , 1")

I Section 2.1 Information Storage 45

I formBoolean algebras and rings, respectively. Each value of w defines a different
Boolean algebra and a different Boolean ring.

Aside: Are Boolean rings the same as

Fill in the following table showing the results of evaluating Boolean operations
on bit vectors.

Operation Result

[01010101]

a & b

a l b
a A b

One useful application of bit vectors is to represent finite sets. For example,
we can denote any subset A c (O, l , . . . , w - 1) as a bit vector [a,-l,. . . , al, ao],
where a, = 1 if and only if i E A. For example, (recalling that we write a,-1
on the left and ao on the right), we have a = [01101001] representing the set
A = (0,3,5,6], and b = [01010101] representing the set B = {O, 2 ,4,6) . Under
this interpretation, Boolean operations 1 and & correspond to set union and
intersection, respectively, and " corresponds to set complement. For example,
the operation a & b yields bit vector [01000001], while A n B = {0,6]. -

In fact, for any set S, the structure (P(S), U, n, ,0 , S) forms a Boolean
algebra, where P(S) denotes the set of all subsets of S, and - denotes the set
complement operator. That is, for any set A, its complement is the set ;i = {a E

Sla $ A) . The ability to represent and manipulate finite sets using bit vector
operations is a practical outcome of a deep mathematical principle.

Computers generate color pictures on a video screen or liquid crystal display
by mixing three different colors of light: red, green, and blue. Imagine a
simple scheme with three different lights, each of which can be turned on or
06 projecting onto a glass screen:

1 46 Chapter 2 Repre5enting and Manipulating Information

Light sources Glass screen

n

Observer

@

We can then create eight different colors based on the absence (0) or presence
(1) of light sources R. G , and B:

R G B
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Color --
Black
Blue
Green
Cyan
Red
Magenta
Yellow
White

This set of colors forms an eight-element Boolean algebra.

A. The complement of a color is formed by turning off the lights that are on
and turning on the lights that are of£ What would be the complements of
the eight colors listed above?

B. What colors correspond to Boolean values 0"' and lW for this algebra?

C. Describe the effect of applying Boolean operations on the following colors:

Blue (Red - -
,Magenta & Cyan =

Green White =

2.1.8 Bit-Level Operations in C

One useful feature of C is that it supports bit-wise Boolean operations. In fact,
the symbols we have used for the Boolean operations are exactly those used by C:

/ for OR, & for AND, I for NOT, and A for EXCLUSIVE-OR. These can be applied

Section 2.1 Information Storage 47

to any "integral" data type, that is, one declared as type char or int, with or
without qualifiers such as short, long, or unsigned. Here are some examples
of expression evaluation:

As our examples show, the best way to determine the effect of a bit-level
expression is to expand the hexadecimal arguments to their binary representations,
perform the operations in binary, and then convert back to hexadecimal.

C expression

3 10
To show how the ring properties of ^ can be useful, consider the following
program:

Binary expression 1 Binary result C result

1 void inplace-swap(int *x, int * y)

2 I
3 *x = *x *y; I * Step 1 * I
4 * y = *x * * y ; I * Step 2 * I
5 *x = *x ^ * y ; I * Step 3 * I

As the name implies, we claim that the effect of this procedure is to swap
the values stored at the locations denoted by pointer variables x and y. Note
that unlike the usual technique for swapping two values, we do not need a third

-Ox41

location to temporarily store one value while we are moving the other. There is
no performance advantage to this way of swapping. It is merely an intellectual

- [O l O O O ~ ~ ~] 1 [10111110] 1 OxBE 1

amusement.
Starting with values a and b in the locations pointed to by x and y, respec-

tively, fill in the table that follows giving the values stored at the two locations
after each step of the procedure. Use the ring properties to show that the de-
sired effect is achieved. Recall that every element is its own additive inverse
(that is, a A a = 0).

Step 1

Step 2

S t e ~ 3

48 Chapter 2 Representing and Manipulating Information

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within a word. As
an example, the mask OxFF (having 1s for the least significant eight bits) indicates
the low-order byte of a word. The bit-level operation x & OXFF yields a value
consisting of the least significant byte of x, but with all other bytes set to 0. For
example, with x = Ox89ABCDEF, the expression would yield OxOOOOOOEF. The
expression - 0 will yield a mask of all is, regardless of the word sue of the machine.
Although the same mask can be written OxFFFFFFFF for a 32-bit machine, such
code is not as portable.

Write Cexpressions forthefollowingvalues, with the resultsforx = Ox98FDECBA
and a 32-bit word size shown in square brackets:

I A. The least significant byte of x, with all other bits set to 1 [OXFFFFFFBA].

B. The complement of the least significant byte of x, with all other bytes left
unchanged [Ox9 B F D E C ~ 51.

C. All but the least significant byte of x, with the least significant byte set to
0 [OX~~FDECOO].

Although our examples assume a 32-bit word size, your code should work for
any word size w 2 8.

The Digital Equipment VAX computer was a very popular machine from the
late 1970s until the late 1980s. Rather than instructions for Boolean opera-
tions Am and OR, it had instructions bis (bit set) and bic (bit clear). Both
instructions take a data word x and a mask word m. They generate a result z
consisting of the bits of x modified according to the bits of m. With bis, the
modification involves setting z to 1 at each bit position where m is 1. With bic,
the modification involves setting z to 0 at each bit position where m is 1.

We would like to write C functions bis and bic to compute the effect of
these two instructions. Fill in the missing expressions in the following code,
using the bit-level operations of C:

I * Bit Set * I
int bis(int x, int m)

I I * Write an expression in C that computes the effect of bit set * I
int result =
return result;

)

Section 2.1 Information Storage 49

I * B i t Clear * I

i n t b i c (i n t x, i n t m)
I

/ * Write an expression i n C t ha t computes the e f fec t of bit clear * /

i n t r e s u l t =
r e t u r n r e s u l t ;

1

2.1.9 Logical Operations in C

C also provides a set of logical operators / 1 , &&, and ! , which correspond to
the OR, AND, and NOT operations of propositional logic. These can easily be
confused with the bit-level operations, but their function is quite different. The
logical operations treat any nonzero argument as representing TRUE and argument
0 as representing FALSE. They return either 1 or 0, indicating a result of either TRUE
or FALSE, respectively. Here are some examples of expression evaluation:

Observe that a bit-wise operation will have behavior matching that of its
logical counterpart only in the special case in which the arguments are restricted
to 0 or 1.

A second important distinction between the logical operators && and 1 1 ver-
sus their bit-level counterparts & and (is that the logical operators do not evaluate
their second argument if the result of the expression can be determined by evalu-
ating the first argument. Thus, for example, the expression a && 5 /a will never
cause a division by zero, and the expression p && *p++ will never cause the
dereferencing of a null pointer.

Suppose that x and y have byte values 0x6 6 and 0x93, respectively. Fill in the
following table indicating the byte values of the different C expressions:

Expression
X & Y

X I Y
!X / / !y

x && -y

Value Expression
x && y

x I 1 Y

Value

50 Chapter 2 Representing and Manipulating Information

3 14
Using only bit-level and logical operations, write a C expression that is equiv-
alent to x == y. In other words, it will return 1 when x and y are equal and 0
otherwise.

2.1.10 Shift Operations in C

C also provides a set of shift operations for shifting bit patterns to the left and
to the right. For an operand x having bit representation [xn-1, xn-2, . . . , x o] , the
C expression x << k yields a value with bit representation [x , - ~ - ~ , Xn-k-2, . . . ,
xo, 0, . . .0]. ?hat is, x is shifted k bits to the left, dropping off the k most sig-
nificant bits and filling the right end with k 0s. The shift amount should be a
value between 0 and n - 1. Shift operations group from left to right, so x << j
<< k is equivalent to (x << j) << k. Be careful about operator precedence:
1<<5 - l isevaluatedasl << (5 - l) , n o t a s (1 < < 5) - 1.

There is a corresponding right shift operation x >> k, but it has a slightly
subtle behavior. Generally, machines support two forms of right shift: logical
and arithmetic. A logical right shift fills the left end with k Os, giving a result
[O, . . . ,0 , x , _ l , ~ ~ - 2 ~ . . . x k] . An arithmetic right shift fills the left end with k repe-
titions of the most significant bit, giving a result [x , - ~ , . . . , x , - l , x n - l , x,-2, . . . x k] .

This convention might seem peculiar, but as we will see it is useful for operating
on signed integer data.

The C standard does not precisely define which type of right shift should be
used. For unsigned data (i.e., integral objects declared with the qualifier un-
signed). right shifts must be logical. For signed data (the default), either arith-
metic or logical shifts may be used. This unfortunately means that any code
assuming one form or the other will potentially encounter portability problems.
In practice, however, almost all compilerlmachine combinations use arithmetic
right shifts for signed data, and many programmers assume this to be the case.

I Fill in the table below showing the effects of the different shift operations on
single-byte quantities. The best way to think about shift operations is to work
with binary representations. Convert the initial values to binary, perform the
shifts, and then convert back to hexadecimal. Each of the answers should be 8
binary digits or 2 hexadecimal digits.

I

Hex Binary Binary Hex) Binary Hex I Binary Hex
I

OxFO

OxOF

oxcc

Section 2.2 Integer Representations 51

C declaration

char

1 unsigned long [in t] 1 0 4,294,967,295 0 1 4,294,967,295 1

I unsigned char
short [int]
unsigned shor t [in t]
i n t
unsigned [in t]

Figure 2.8 C Integral data types. Text in square brackets is optional.

Guaranteed

2.2 Integer Representations

Typical 32-bit

0
-32,767

0
- 32,767

0 ---

In this section we describe two different ways bitscan be used to encodeintegers-
one that can only represent nonnegative numbers, and one that can represent neg-
ative, zero, and positive numbers. We will see later that they are strongly related
both in their mathematical properties and their machine-level implementations.
We also investigate the effect of expanding or shrinking an encoded integer to fit
a representation with a different length.

Minimum 1 Maximum i Minimum 1 Maximum
1 -127) 127 1 -128 (127

255 1
I

32,767
63,535

65,535 1
long [int] 1 -2,147,483,647

2.2.1 Integral Data Types

2,147,483,647

C supports a variety of integral data types-ones that represent a finite range of
integers. These are shown in Figure 2.8. Each type has a size designator: char,
s h o r t , i n t , and long, as well as an indication of whether the represented num-
ber is nonnegative (declared as unsigned), or possibly, negative (the default).
The typical allocations for these different sizes were given in Figure 2.2. As in-
dicated in Figure 2.8, these different sizes allow different ranges of values to be
represented. The C standard defines a minimum range of values each data type
must be able to represent. As shown in the figure, a typical 32-bit machine uses
a 32-bit representation for data types i n t and unsigned, even though the C
standard allows 16-bit representations. As described in Figure 2.2, the Compaq
Alpha uses a 64-bit word to represent l o n g integers, giving an upper limit of over
1.84 x 1019 for unsigned values, and a range of over f 9.22 x 1018 for signed values.

New to C?: Signed and unsigned numbers in C, C+i, and Java.

Both C and C++ support signed (the default) and unsigned numbers. Java supports only signed numbers.

2.2.2 Unsigned and Two's-Complement Encodings

Assume we have an integer data type of w bits. We write a bit vector as either 2,
to denote the entire vector, or as [x,-~, x,-2, . . . , xO] to denote the individual bits

52 Chapter 2 Representing and Manipulating Information

within thevector. Treating i as a number writteninbinary notation, we obtain the
unsigned interpretation of ;. We express this interpretation as a function B2UW
(for "binary to unsigned," length w):

In this equation, the notation "=" means that the left hand side is defined to be
equal to the right hand side. The function B2Uw maps strings of 0s and 1s of
length w to nonnegative integers. The least value is given by bit vector [OO . . .(I]
having integer value 0, and the greatest value is given by bit vector [11 . . . I.]
having integer value UMux, = zyyo1 2' = 2" - 1 . Thus, the function B2U,, can
be defined as a mapping B2Uw: (0, lJW + (0, . . . , 2W - 1). Note that B2Uu, is a
bijection-it associates a unique value to each bit vector of length w; conversely,
each integer between 0 and 2" - 1 has a unique binary representation as a bit
vector of length w .

For many applications, we wish to represent negative values as well. The
most common computer representation of signed numbers is known as two's-
complement form. This is defined by interpreting the most significant bit of the
word to have negative weight. We express this interpretation as a function B2Tw
(for "binary to two's-complement" length w):

The most significant bit is also called the sign bit. When set to 1, the repre-
sented value is negative, and when set to 0 the value is nonnegative. The least
representable value is given by bit vector [lo. . . 0] (i.e., set the bit with nega-
tive weight but clear all others) having integer value TMin, = - 2~ - ' . The
greatest value is given by bit vector [Ol.. .I], having integer value TMax,
zy2 , =O 2i = 2"-' - 1. Again, one can see that B2Tw is a bijection B2T.: (O,l]" +
(-2W-1, . . . , 2"-' - 11, associating a unique integer in the representable range for
each bit pattern.

Assuming w = 4, we can assign a numeric value to each possible hexadecimal
digit, assuming either an unsigned or two's-complement interpretation. Fill in
the following table according to these interpretations by writing out the nonzero
powers of two in the summations shown in Equations 2.1 and 2.2:

Section 2.2 Integer Representations 53

Hexadecimal Binary 1 I

Figure 2.9 shows the bit patterns and numeric values for several "interesting"
numbers for different word sizes. The first three give the ranges of representable
integers. A few points are worth highlighting. First, the two's-complement range
is asymmetric: ITMin,l = ITMar,l + 1, that is, there is no positive counter-
part to TMin,. As we shall see, this leads to some peculiar properties of two's-
complement arithmetic and can be the source of subtle program bugs. Second,
the maximum unsigned value is just over twice the maximum two's-complement
value: UMax, = 2TMar, + 1. ?his follows from the fact that two's-complement
notation reserves half of the bit patterns to represent negative values. 7he other
cases are the constants -1 and 0. Note that -1 has the same bit representation
as UMax-a string of all 1s. Numeric value 0 is represented as a string of all 0s
in both representations.

I TMin, 0x80 0x8000 1 0x80000000 0~8000000000000000)

1 Quantity

U M a x ,

TMm,

Figure 2.9 "Interesting" numbers. Both numeric values and hexadecimal representations
are shown.

Word size w

8

OXFF

255 --
Ox7F

127

16

OXFFFF

65,535

Ox7FFF

32,767

32

OXFFFFFFFF

4,294,967,295
Ox7FFFFFFF

2,147,483,647

64

OXFFFFFFFFFFFFFFFF

18,446,744,073,709,551,615 -
Ox7FFFFFFFFFFFFFFF

9,223,372,036,854,775,807

54 Chapter 2 Representing and Manipulating Information

The C standard does not require signed integers to be represented in two's-
complement form, but nearly all machines do so. To keep code portable, one
should not assume any particular range of representable values or how they are
represented, beyond the ranges indicated in Figure 2.2. The f i le <limits. h>
in the C library defines a set of constants delimiting the ranges of the different
integer data types for the particular machine on which the compiler i s running.
For example, i t defines constants INTMAX, I N T J I N , and U I N T m describing
the ranges of signed and unsigned integers. For a two's-complement machine
in which data type int has w bits, these constants correspond to the values of
TMax,, TMin, , and UMax, .

Aside: Alternative representations of signed numbers.

There are two other standard representations for signed numbers:

Ones' Complement: This is the same as two's-complement, except that the most significant bit has weight
-(2W-1 - 1) rather than -2"-':

Sign-Magnitude: The most significant bit is a sign bit that determines whether the remaining bits
should be given negative or positive weight:

Both of these representations have the curious property that there are two different encoding5 of the
number 0. For both representations, [OO.. .O] is interpreted as +O. The value -0 can be represented
in sign-magnitude form as [l o . . .0] and in ones' complement as [ll. ..I]. Although machines based
on ones' complement representations were built in the past, almost all modern machines use two's-
complement. We will see that sign-magnitude encoding is used with floating-point numbers.

Note the different position of apostrophes: Two's-complement versus Ones' complement.

As an example, consider the following code:

1 short int x = 12345;
2 short int mx = -x;
3
4 show-bytes((byteg0inter) &x, sizeof(short int));
5 show-bytes ((bytegointer) &mx, sizeof (short int)) ;

Section 2.2 Integer Representations 55

Weight

1
2
4
8

16
32
64

128
256
512

1.024
2.048
4,096
8,192

16,384
432,768

Total --

12,345
Bit Value
1 1
0 0
0 0
1 8
1 16
1 32
0 0
0 0
0 0
0 0
0 0
0 0
1 4096
1 8192
0 0
0 0

12,345

- 12,345
Bit Value
1 1
1 2
1 4
0 0
0 0
0 0
1 64
1 128
1 256
1 512
1 1,024
1 2,048
0 0
0 0
1 16,384
1 -32,768

-12,345

53,191
Bit Value
1 1
1 2
1 4
0 0
0 0
0 0
1 64
1 128
1 256
1 512
1 1,024
1 2,048
0 0
0 0
1 16,384
1 32,768

53,191

Figure 2.10 Two's-complement representations of 12,345 and - 12,345, and
unsigned representation of 53,191. Note that the latter two have identical bit
representations.

When run on a big-endian machine, this code prints 30 39 and c f c7 , indi-
cating that x has hexadecimal representation 0x3039, while mx has hexadeci-
mal representation OxCFC7. Expanding these into binary we get bit patterns
[0011000000111001] for x and [1100111111000111] for mx. As Figure 2.10 shows,
Equation 2.2 yields values 12,345 and -12,345 for these two bit patterns.

CP Pr& 7 17
In Chapter 3, we will look at listings generated by a disassembler, a program
that converts an executable program file back to a more readable ASCII form.
These files contain many hexadecimal numbers, typically representing values
in two's-complement form. Being able to recognize these numbers and under-
stand their significance (for example, whether they are negative or positive) is
an important skill.

For the lines labeled A-K (on the right) in the following listing, convert the
hexadecimal values shown to the right of the instruction names (sub, push,
mov, and add) into their decimal equivalents.

56 Chapter 2 Representing and Manipulating Information

sub
push
mov
mov
mov
mov
add
add
mov
mov
mov
fnov
nov

$0~184, %esp
%ebx
Ox8(%ebp),%edx
Oxc (%ebp) , Bebx
OxlO(%ebp).%ecx
Oxfffffe94(%ebp!,%eax
%ecx, %ebx
0x10 (tedx) , Beax
%eax,OxfffffeaO(%ebp)
OxfffffflO(%ebpI,%eax
%eax, Oxlc (%edx)
%ebx,Oxffffff7c(%ebp)
0x1 8 (%edx) , %eax

2.2.3 Conversions Between Signed and Unsigned

Since both B2U, and B2T, are bijections, they have well-defined inverses. De-
fine U2B, to be 8 2 U i 1 , and T2Bw to be B ~ T ; ' . These functions give the
unsigned or two's-complement bit patterns for a numeric value. Given an integer
x in the range 0 5 x < 2", the function U2B,(x) gives the unique w-bit unsigned
representation of x . Similarly, when x is in the range -2,-' p x < 2W-1, the
function T2Bu,(n) gives the unique w-bit two's-complement representation of x .
Observe that for values in the range 0 5 x < 2W-1, both of these functions will
yield the same bit representation-the most significant bit will be 0, and hence it
does not matter whether this bit has positive or negative weight.

Consider the function U2Tu,(x) = B2Tu,(U2B,(x)), which takes a num-
ber between 0 and 2" - 1 and yields a number between -2"-' and 2"-' - 1,
where the two numbers have identical bit representations, except that the argu-
ment is unsigned, while the result has a two's-complement representation. Con-
versely, the function T2U,(x) = B2U,,(T2Bu,(x)) yields the unsigned number
having the same bit representation as the two's-complement value of x. For ex-
ample, as Figure 2.10 indicates, the 16-bit, two's-complement representation of
-12,345 is identical to the 16-bit, unsigned representation of 53,191. Therefore,
T2UI6(-12,345) = 53,191, and U2Tl6(53,l91) = -12,345.

These two functions might seem to be of only academic interest, but they
actually have great practical importance-they formally define the effect of casting
between signed and unsigned values in C. For example, consider executing the
following code on a two's-complement machine:

1 int x = -1;
2 unsigned ux = (unsigned) X;

This code will set ux to UMax,, where w is the number of bits in data type, int,
since by Figure 2.9 we can see that the w-bit two's-complement representation of
-1 has the same bit representation as UMax,. In general, casting from a signed
value x to unsigned value (unsigned) x i s equivalent to applying function T2U.
The cast does not change the bit representation of the argument, just how these

Section 2.2 Integer Representations 57

bits are interpreted as a number. Similarly, casting from unsigned value u to signed
value (int) u is equivalent to applying function U 2 T .

Using the table you filled in when solving Problem 2.16, fill in the following
table describing the function T2U4:

To get a better understanding of the relation between a signed number x and
its unsigned counterpart T 2 U w (x) , we can use the fact that they have identical bit
representations to derive a numerical relationship. Comparing Equations 2.1 and
2.2, we can see that for bit pattern i , if we compute the difference B2Uw(;) -
B 2 T U , (i) , the weighted sums for bits from 0 to w - 2 will cancel each other,
leaving a value: B ~ U , (;) - B 2 T w (i) = ~ , - ~ (2 ~ ' - ' - -2,-') = ~ , - ~ 2 ~ . This
gives a relationship B 2 U w (i) = xw-12W + B 2 T W (i) . If we let x = B 2 T w (i) , we
then have

B 2 U w (T 2 B w (x)) = T 2 U w (x) = X , - ~ ~ ~ + X P . 3)

This relationship is useful for proving relationships between unsigned and two's-
complement arithmetic. In the two's-complement representation of x , bit xw_l
determines whether or not x is negative, giving

Figure 2.1 1
Conversion from two's-complement 2W

to unsigned. Function T2U converts
negative numbers to large positive

+2W-1 2w-1
numbers. Unsigned

Two's
complement 0 0

-2w 1

58 Chapter 2 Representing and Manipulating Information

Figure 2.11 illustrates the behavior of function T2U. As it illustrates, when
mapping a signcd number to its unsigned counterpart, negative numbers are con-
verted to large positive numbers, while nonnegative numbers remain unchanged.

9
Explain how Equation 2.4 applies to the entnes m the table you generated
when solving Problem 2.18.

Going in the other direction, we wish to derive the relationship between an
unsigned number s and its signed counterpart U2T,!(x). If we let x = B2Uw (?),
we have

In the unsigned representation of x , bit x,-1 determines whether or not x is
greater than or equal to 2w-1, giving

This behavior is illustrated in Figure 2.12. For small (< 2"'-') numbers, the con-
version from unsigned to signed preserves the numeric value. For large (> 2"-')
the number is converted to a negative value.

To summarize, we can consider the effects of converting in both directions
between unsigned and two's-complement representations. For values in the range
0 5 x < 2"-', we have T 2 U , (x) = x and U2T,(x) = x . That is, nuf&ers in this
range have identical unsigned and two's-complement representations. .For values
outside of this range, the convcrsions either add or subtract 2"'. Far example,
we have T2Uw(-1) = -1 $2" = UMaxw-the negative number closest to 0
maps to the largest unsigned number. At the other extreme, one can see that
T 2 U W (T M i n ,) = -2"-' $ 2W = 2W-' = TMax, $ 1-the most negative number
maps to an unsigned number just outside the range of positive, two's-complement
numbers. Using the example of Figure 2.10, we can see that T2u16(-12,345) =
65,536 t -12,345 = 53,191.

Figure 2.12 2w
Conversion from unsigned to
two's-complement. Function U2T
converts numbers greater than Unsigned 2'-' + 2w- I
2"-' - 1 to negative values.

Two's
0 0 complement

-2"-1

Section 2.2 Integer Representations 59

2.2.4 Signed vs. Unsigned in C

As indicated in Figure 2.8, C supports both signed and unsigned arithmetic for all
of its integer data types. Although the C standard does not specib a particular
representation of signed numbers, almost all machines use two's-complement.
Generally, most numbers are signed by default. For example, when declaring a
constant such as 12345 or OxlA2B, the value is considered signed. To create an
unsigned constant. the character 'u' or 'u' must be added as suffix (e.g., 12345U
or 0 x 1 ~ 2 ~ ~) .

C allows conversion between unsigned and signed. The rule is that the under-
lying bit representation is not changed. Thus, on a two's-complement machine,
the effect is to apply the function U 2 T w when convertingfrom unsigned to signed,
and T2Uw when converting from signed to unsigned, where w is the number of
bits for the data type.

Conversions can happen due to explicit casting, such as in the following code:

1 int tx, ty;
2 unsigned ux, uy;
3
4 tx = (int) ux;
5 uy = (unsigned) ty;

Alternatively, they can happen implicitly when an expression of one type is as-
signed to a variable of another, as in the following code:

1 int tx, ty;
2 unsigned ux, uy;
3

4 tx = ux; I * Cast to signed * I
5 uy = ty; I * Cast to unsigned ' I

When printing numeric values with printf, the directives %d, %u, and %x should
be used to print a number as a signed decimal, an unsigned decimal, and in hex-
adecimal format, respectively. Note that printf does not make use of any type
information, and so it is possible to print a value of type int with directive %u and
a value of type unsigned with directive %d. For example, consider the following
code:

1 int x = -1;
2 unsigned u = 2147483648; I * 2 to the 31st * I
3

4 printf("x = %u = %d\nH, x, x);
5 printf("u = %u = %d\nH, u, u) ;

When run on a 32-bit machine, it prints the following:

60 Chapter 2 Representing and Manipulating Information

Expression
0 == OU

-1 < 0

-1 < OU
2147483647 > -2147483647-1

2147483647U > -2147483647-1

2147483647 > lint) 2147483648U
-1 > -2

(unsigned) -1 > -2

Type
unsigned
signed
unsigned
signed
unsigned
signed
signed
unsigned

Evaluation
1
1

0 *
1
0 *
1 *
1

1

Figure 2.13 Effects of C promotion rules on 32-bit machine. Nonintuitive cases marked by ".' We must write
TMina in C as -2147483647-1, rather than -2147483648, to avoid overflow problems. The compiler processes
a n expression of the form -X by first reading the expression X and then negating it, but 2147483648 is too large to
represent as a 32-bit, two's-complement number.

In both cases, print f prints the word first as if it represented an unsigned number
and second as if it represented a signed number. We can see the conversion
routines in action: T2U32(-l) = UMars2 = 4,294,967,295 and ~ 2 ~ 3 2 (2 ~ l) =
z3l - 232 = -z3l = TMinn.

Some peculiar behavior arises due to C's handling of expressions containing
combinations of signed and unsigned quantities. When an operation is performed
where one operandis signed and the other is unsigned, C implicitly casts the signed
argument to unsigned and performs the operations assuming the numbers are non-
negative. As we will see, this convention makes little difference for standard arith-
metic operations, but it leads to nonintuitive results for relational operators such as
< and >. Figure 2.13 shows some sample relational expressions and their resulting
evaluations, assuming a 32-bit machine using two's-complement representation.
Consider the comparison - 1 < OU. Since the second operand is unsigned, the
first one is implicitly cast to unsigned, and hence the expression is equivalent to
the comparison 4294967295U < OU (recall that T2U,(-1) = UMar,), which
of course is false. The other cases can be understood by similar analyses.

Assuming the expressions are evaluated on a 32-bit machine that uses two's-
complement arithmetic.fillin the following table describing the effect ofcasting
and relational operations, in the style of Figure 2.13:

/ Ex~ression 1 Evaluation 1

-2147483647-1 <--2147483647

(unsigned) (-2147483647-11 < -2147483647

-2147483647-1 < 2147483647

(unsigned) (-2147483647-1) < 2147483647
-

I

Section 2.2 Integer Representations 61

2.2.5 Expanding the Bit Representation of a Number

One common operation is to convert between integers having different word sizes,
while retaining the same numeric value. Of course, this may not be possible when
the destination data type is too small to represent the desired value. Converting
from a smaller to a larger data type, however, should always be possible. To
convert an unsigned number to a larger data type, we can simply add leading 0s
to the representation. this operation is known as zero extension. For converting
a two's-complement number to a larger data type, the rule is to perform a sign
extension, adding copies of the most significant bit to the representation. Thus,
if our original value has bit representation [x , - ~ , x,-2, . . . , xo], the expanded
representation would be [x,-1, . . . , x,-1, x,-1, x,-2, . . . , x o] .

As an example, consider the following code:

1 short sx = val; I * -12345 * I
2 unsigned short usx = sx; I * 53191 * I
3 int x = sx; I * -12345 * I
4 unsigned ux = usx; I * 53191 * I

5
6 print£ ("sx = %d:\tW, sx);
7 show-bytes((byteqointer1 &sx, sizeof(short));
8 printf("usx = %u:\tH, usx);
9 show-bytes((byteq0inter) &usx, sizeof(unsigned short)) ;
10'-~rintf("x = %d:\tn, x);
11 show-bytes((byteqointer) &x, sizeof(int));
12 printf("ux = %u:\tN, ux);
13 show-bytes((byteqointer) &ux, sizeof(unsigned));

When run on a 32-bit big-endian machine using two's-complement representa-
tions, this code prints the following output:

sx = -12345: cf c7
usx = 53191: cf c7
x = -12345: ff ff cf c7
ux = 53191: 00 00 cf c7

We see that, although the two's-complement representation of -12,345 and the
unsigned representation of 53,191 are identical for a 16-bit word size, they differ
for a 32-bit word size. In particular, -12,345 has hexadecimal representation
OxFFFFCFC7, while 53,191 has hexadecimal representation Ox0000CFC7. The
former has been sign extended-16 copies of the most significant bit 1, having
hexadecimal representation OxFFFF, have been added as leading bits. The latter
has been extended with 16 leading Os, having hexadecimal representation 0x0 0 0 0.

Can we justify that sign extension works? What we want to prove is that

where in the expression on the lefthand side, we have made k additional copies
of bit x,-l. The proof follows by induction on k . That is, if we can prove that
sign extending by one bit preserves the numeric value, then this property will hold

62 Chapter 2 Representing and Manipulating Information

when sign extending by an arbitrary number of bits. Thus, the task reduces to
proving that

Expanding the lefthand expression with Equation 2.2 gives the following:

The key property we exploit is that -2"+2"-' = - 2"-'. Thus, the combined
effect of adding abit of weight -2w and of converting the bit having weight -2W-1
to be one with weight 2"-' is to preserve the original numeric value.

One point worth making is that the relative order of conversion from one
data size to another and between unsigned and signed can affect the behavior of
a program. Consider the following additional code for our previous example:

1 unsigned uy = x; / * Mystery! * /

2
3 printf ("uy = %u:\tW, uy);
4 show-bytes((byteq0inter) &uy, sizeof(unsigned));

This portion of the code causes the following output to be printed:

This shows that the expressions:

(unsigned) (int) sx I * 4294954951 * /

and

(unsigned) (unsigned short) sx / * 53191 * /

produce different values, even though the original and the final data types are the
same. In the former expression, we first sign extend the 16-bit short to a 32-bit
int, whereas zero extension is performed in the latter expression.

Section 2.2 Integer Representations 63

i I int fun1 (unsigned word)
I

return (int) ((word << 24) >> 24) ;

int fun2(unsigned word)

I
return ((int) word << 24) >> 24;

1

Assume these are executed on a machine with a 32-bit word sue that uses
two's-complement arithmetic. Assume also that right shifts of signed values are
performed arithmetically, while right shifts of unsigned values are performed
logically.

A. Fill in the following table showing the effect of these functions for several
example arguments:

funl (w) fun2 (w) E e F
B. Describe in words the useful computation each of these functions performs.

2.2.6 Truncating Numbers

Suppose that rather than extending avalue with extra bits, we reduce the number
of bits representing a number. This occurs, for example, in the following code:

1 int x = 53191;
2 short sx = (short) x; I * -12345 * I
3 int y = sx; I * -12345 * I

On a typical 32-bit machine, when we cast x to be short, we truncate the
32-bit int to be a 16-bit short int. As we saw before, this 16-bit pattern is the
two's-complement representation of - 12,345. Whenwe castthis back to int, sign
extension will set the high-order 16 bits to is, yielding the 32-bit two's-complement
representation of - 12,345.

When truncating a w-bit number 2 = [x , - l , x , -2 , . . . , xo] to a k-bit number,
we drop the high-order w - k bits, giving a bit vector 2' = [x ~ - ~ , xk-2, . . . , x O] .
Truncating a number can alter its value-a form of overflow. We now investigate
what numeric value will result. For an unsigned number x , the result of truncating

1 64 Chapter 2 Representing and Manipulating Information

it to k bits is equivalent to computing x mod 2'. This can be seen by applying the
modulus operation to Equation 2.1:

- - L 5 x i 2 i J mod 2'

In this derivation, we make use of the property that 2' mod 2k = 0 for any i > k ,
and that x,2' 5 2' = 2k - 1 < 2 k .

For a two's-complement number x , a similar argument shows that B 2 T , ([x W ,
x,-1, . . . , xo]) mod Zk = B 2 u k ([~ k , ~ k - l , . . . , x O]) . That is. x mod 2k can be rep-
resented by an unsignednumber having bit-level representation [x ~ - ~ , . . . , x o] . In
general, however, we treat the truncated number as being signed. This will have
numeric value U 2 T k (x mod 2k) .

Summarizing, the effects of truncation are as follows:

B2Ut([xk , xk-1, . . . , xo]) = B2U ,([xu, . . . , xo]) mod 2' (2.7)

B2Tk([xk? xk-1, . . . , X O]) = U 2 T k (B 2 T W ([x , , X , - l , . . . , XO]) mod 2 k) (2 .8)

Suppose we truncate a four-bit value (represented by hex digits 0 through
F) to a three-bit value (represented as hex digits 0 through 7). Fill in the
following table showing the effect of this truncation for some cases in terms of
the unsigned and two's-complement interpretations of those bit patterns:

Hex 1 Unsimed

Explain how Equations 2.7 and 2.8 apply to these cases. -

Two's-com~lement
I I L. I

I Original 1 Truncated 1 Original 1 Truncated 1 Original 1 Truncated
0 0 I 0 0

Section 2.3 lnteger Arithmetic 65

2.2.7 Advice onqsigned vs. Unsigned

As we have seen, the implicit casting of signed to unsigned leads to some non-
intuitive behavior. Nonintuitive features often lead to program bugs, and ones
involving the nuances of implicit casting can be especially difficult to see. Since
the casting is invisible, we can often overlook its effects.

3
Consider the following code, which attempts to sum the elements of an array
a, where the number of elements is given by parameter length:

1 I * WARNING: This is buggy code * I
2 float sum_elements(float a[], unsigned length)
3 {

4 int i;
5 float result = 0;
6
7 for (i = 0; i <= length-1; i++)
8 result += a[il;
9 return result;
10 }

When run with argument length equal to 0, this code should return 0.0.
Instead, it encounters a memory error. Explain why this happens, and show
how the code can be corrected.

One way to avoid such bugs is to never use unsigned numbers. In fact, few
languages other than C support unsigned integers. Apparently these other lan-
guage designers viewed them as more trouble than they are worth. For example,
Java supports only signed integers, and it requires that they be implemented with
two's-complement arithmetic. The normal right shift operator >> is guaranteed
to perform an arithmetic shift. The special operator >>> is defined to perform a
logical right shift.

Unsigned values are very useful when we want to think of words as just col-
lections of bits with no numeric interpretation. This occurs, for example, when
packing a word with flags describing various Boolean conditions. Addresses are
naturally unsigned, so systems programmers find unsigned types to be helpful.
Unsigned values are also useful when implementing mathematical packages for
modular arithmetic and for multiprecision arithmetic, in which numbers are rep-
resented by arrays of words.

2.3 lnteger Arithmetic

Many beginning programmers are surprised to find that adding two positive num-
bers can yield a negative result, and that the comparison x < y can yield a different
result than the comparison x-y < 0. These properties are artifacts of the finite na-
ture of computer arithmetic. Understanding the nuances of computer arithmetic
can help programmers write more reliable code.

66 Chapter 2 Representing and Manipulating Information

2.3.1 Unsigned Addition

Consider two nonnegative integers x and y, such that 0 5 x , y 2W - 1. Each
of these numbers can be represented by w-bit unsigned numbers. If we compute
their sum, however, we have a possible range 0 5 x -t y 5 2 ~ ~ ' - 2. Represent-
ing this sum could require w + 1 bits. For example, Figure 2.14 shows a plot of
the function x + y when x and y have four-bit representations. The arguments
(shown on the horizontal axes) range from 0 to 15, but the sum ranges from 0
to 30. The shape of the function is a sloping plane. If we were to maintain the
sum as a w + 1 bit number and add it to another value, we may require w -t 2
bits and so on. This continued "word size inflation" means we cannot place any
bound on the word size required to fully represent the results of arithmetic op-
erations. Some programming languages, such as Lisp, actually support infinite
precision arithmetic to allow arbitrary (within the memory Limits of the machine,
of course) integer arithmetic. More commonly, programming languages support
fixed-precision arithmetic, and hence operations such as "addition" and "multi-
plication" differ from their counterpart operations over integers.

lnteger addition

Figure 2.14 lnteger addition. With a four-bit word size, the sum could require
5 bits.

Section 2.3 Integer Arithmetic 67

Figure 2.15 X + Y
Relation between
integer addition and
unsigned addition.
When x t y is greater
than 2" - 1, the sum
overflows.

Unsigned arithmetic can be viewed as a form of modular arithmetic. Un-
signed addition is equivalent to computing the sum modulo 2". This value can be
computed by simply discarding the high-order bit in the w $ 1-bit representation
of x $ y . For example, consider a four-bit number representation with x = 9 and
y = 12, having bit representations [1001] and [1100], respectively. Their sum is
21, having a 5-bit representation [10101]. But if we discard the high-order bit, we
get [OlOl], that is, decimal value 5. This matches the value 21 mod 16 = 5.

In general, we can see that if x t y < 2", the leading bit in the w t 1:bit
representation of the sum will equal 0, and hence discarding it will not change
the numeric value. On the other hand, if 2" 5 x $ y < 2"+', the leading bit
in the w t 1-bit representation of the sum will equal 1, and hence discarding it
is equivalent to subtracting 2" from the sum. These two cases are illustrated in
Figure 2.15. This will give us a value in the range 0 5 x t y - 2" < 2"+' -2" = 2",
which is precisely the modulo 2" sum of x and y . Let us define the operation ti
for arguments x and y such that 0 5 x, y < 2", as follows:

This is precisely the result we get in C when performing addition on two w-bit
unsigned values.

An arithmetic operation is said to overflow when the full integer result cannot
fit within the word-size limits of the data type. As Equation 2.9 indicates, overflow
occurs when the two operands sum to 2" or more. Figure 2.16 shows a plot of the
unsigned addition function for word size w = 4. The sum is computed modulo
Z4 = 16. When x $ y < 16, there is no overflow, and x tj y is simply x $ y . This is
shown as the region forming a sloping plane labeled "Normal." When x $ y 2 16,
the addition overflows, having the effect of decrementing the sum by 16. This is
shown as the region forming a sloping plane labeled "Overflow."

When executing C programs, overtlows are not signaled as errors. A t times,
however, we might wish to determine whether overflow has occurred. For exam-
ple, suppose we compute s - x ti y , and we wish to determine whether s equals
x $ y . We claim that overflow has occurred if and only if s < x (or equivalently
s < y .) To see this, observe that x $ y 2 x, and henceif s did not overflow, we will
surely have s 2 x. On the other hand, if s did oxerflow, we haw's = x t y - 2".
Giventhat y < 2",wehave -2" <O,and hences = x $ y -2" < x . Inour

68 Chapter 2 Representing and Manipulating Information

Figure 2.16
Unsigned addition.

Unsigned addition (4-bit word)

With
size,
perfc
16.

a four-bit word
addition is
)rmed modulo

earlier example, we saw that 9 t," 12 = 5. We can see that overflow occurred,
since 5 < 9.

Modular addition forms amathematical structure known as an Abeliangroup,
named after the Danish mathematician Niels Henrik Abel(1802-1829). That is, it
is commutative (that's where the "Abelian" part comes in) and associative. It has
an identity element 0, and every element has an additive inverse. Let us consider
the set of w -bit unsigned numbers with addition operation ti. For every value x ,
there must be some value -: x such that -: x t: x = 0. When x = 0, the additive
inverse is clearly 0. For x > 0, consider the value 2" -x. Observe that this number
is in the range 0 5 2" - x < 2", and (x + 2" - x) mod 2" = 2" mod 2" = 0.
Hence, it is the inverse of x under ti. These two cases lead to the following
equation for 0 5 x < 2":

Section 2.3 Integer Arithmetic 69

We can represent a bit pattern of length w = 4 with a single hex digit. For an
unsigned interpretation of these digits, use Equation 2.10 fill in the following
table giving the values and the bit representations (in hex) of the unsigned
additive inverses of the digits shown.

2.3.2 Two's-Complement Addition

A similar problem arises for two's-complement addition. Given integer values x
and y in the range -2"-' 5 x , y 5 2"-I - 1, their sum is in the range -2" 5
x + y 5 2" - 2 , potentially requiring w + 1 bits to represent exactly. As before, we
avoid ever-expanding data sues by truncating the representation to w bits. The
result is not as familiar mathematically as modular addition, however.

The w-bit two's-complement sum of two numbers has the exact same bit-
level representation as the unsigned sum. In fact, most computers use the same
machine instruction to perform either unsigned or signed addition. Thus, we can
define two's-complement addition for word sue w, denoted as +; on operands x
and y such that -2"-' 5 x , y < 2"-' as

ByEquation2.3 wecanwrite T 2 U w (x) as X , - ~ ~ " + X , and T 2 U w (y) as ~ , - 1 2 ~ + y .
Usingtheproperty that +; is simply additionmodulo 2", alongwith the properties
of modular addition, we then have

x +; y = U 2 T w (T 2 U w (x) +U, T 2 U w (y))

= U 2 T , [(- ~ , - 1 2 ~ + x + -yw-12" + y) mod 2"]

= U 2 T w [(x + y) mod 2")

The terms ~ , - ~ 2 " and yw-12w drop out since they equal 0 modulo 2Y

70 Chapter 2 Representing and Manipulating Information

Figure 2.1 7 x t v
 elation between
integer and
two's-complement
addition. When x f y is
less than -2"-', there
is a negative overflow.
When it is greater than
2W-' t 1, there is a
positive overflow.

t T
Case 4

tzw-'
Case 3

0

Case 2

- 2w-1

Case 1

-2W
Negative ovefflow

To better understand this quantity, let us define z as the integer sum z = x + y ,
Z' as z' = z mod 2", and z" as z" = U2T, (z1) . The value z" is equal to x ct, y .
We can divide the analysis into four cases as illustrated in Figure 2.17:

1. -2" _< z < -2"-'. Then we will have z' = z + 2". This gives 0 5 z' <
-2"-' + 2" = 2"-'. Examining Equation 2.6, we see that z' is in the range
such that z" = z'. This case is referred to as negative overpow. We have added
two negative numbers x and y (that's the only way we can have z < -2w-')
and obtained a nonnegative result z" = x + y + 2".

2. -2w-1 5 z < 0. Then we will again have z' = z + 2", giving -2"-' $ 2W =
2W-' < z' < 2". Examining Equation 2.6, we see that z' is in such a range
that z" = z' - 2", and therefore z" = z' - 2" = z + 2" - 2" = z . That is, our
two's-complement sum z'' equals the integer sum x + y .

3. 0 < - z < 2"-'. Then we will have z' = z , giving 0 5 z' < 2W-', and hence
z" = z' = z . Again, the two's-complement sum z" equals the integer sum
x + y .

4. 2w-1 5 z < 2". We will again have z' = z , giving 2W-1 5 z' < 2". But in this
range we have z" = z' - 2", giving z" = x + y - 2W. This case is referred to
as positive overfow. We have added two positive numbers x and y (that's the
only way we can have z ,2"-') and obtained anegativeresult z" = x + y -2".

By the preceding analysis, we have shown that when operation +t, is applied
to values x and y in the range -2"-' 5 x , y 5 2"-' - 1, we have the following:

2"-' - < x + y Positive Overflow
-2W-1 5 x + y < 2w-' Normal

~ + y + 2 ~ , x + y <-2W-' Negative Overflow
(2.12)

Section 2.3 Integer Arithmetic 71

I X Y I X + Y x + : y I Case
-8 -5 1 -13 1 3 1 1

Figure 2.18 Two's-complement addition examples. The bit-level representation of the
four-bit two's-complement sum can be obtained by performing binary addition of the
operands and truncating the result to four bits.

As an illustration, Figure 2.18 shows some examples of four-bit two's-comple-
ment addition. Each example is labeled by the case to which it corresponds in the
derivation of Equation 2.12. Note that 24 = 16, and thus negative overflow yields
a result 16 more than the integer sum, and positive overflow yields a result 16
less. We include bit-level representations of the operands and the result. Observe
that the result can be obtained by performing binary addition of the operands and
truncating the result to four bits.

Figure 2.19 illustrates two's-complement addition for word size w = 4. The
operands range between -8 and 7. When x t y i -8, two's-complement addition
has a negative underflow, causing the sum to be incremented by 16. When -8 5
x t y i 8, the addition yields x $ y. When x $ y 2 8, the addition has a positive
overflow, causing the sum to be decremented by 16. Each of these three ranges
forms a sloping plane in the figure.

Equation 2.12 also lets us identify the cases where overflow has occurred.
When both x and y are negative, but x +; y 1 0, we have negative overflow.
When both x and y are positive, but x +; y i 0, we have positive overflow.

Practlce P r o b l ~
Fill in the table that follows in the style of Figure 2.18. Give the integer values
of the 5-bit arguments, the values of both their integer and two's-complement
sums, the bit-level representation of the two's-complement sum, and the case
from the derivation of Equation 2.12.

72 Chapter 2 Representing and Manipulating Information

Figure 2.19
Two's-complement
addition. With a four-bit
word size, addition can
have a negative overflow
when x t y < -8 and a
positive overflow when
xty'8.

2.3.3 Two's-Complement Negation

x Y

We can see that every number x in the range -2"-' 5 x i zW-' has an additive
inverse under t;: First, for x # -2"-', we can see that its additive inverse is
simply -x. That is, we have -2"-' i -x i zW-' and -x t; x = -x +x = 0. For
x = -2"-' = TMin,, on the other hand, -x = 2"-' cannot be represented as a
w-bit number. We claim that this special value has itself as the additive inverse

Two's-complement addition (d b i t word)

x t y X+;Y Case

Section 2.3 Integer Arithmetic 73

under +b. The value of -2"+' +: -2"+' is given by the third case of Equation
2.12, since -2"-' f -2"-' = -2". This gives - 2 ~ + l ti -2"+' = -2" f 2W = 0.
From this analysis, we can define the two's-complement negation operation -;
for x in the range -22-1 5 x < 2w-1 as follows:

6
We can represent a bit pattern of length w = 4 with a single hex digit. For
a two's-complement interpretation of these digits, fill in the following table to
determine the additive inverses of the digits shown.

Hex I Decimal 1 Decimal 1 Hex

What do youobserve about thebit patternsgenerated by two's-complement
and unsigned (Problem 2.24) negation?

A well-known technique for performing two's-complement negation at the
bit level is to complement the bits and then increment the result. In C, this can
be written as "x + 1. To justify the correctness of this technique, observe that
for any single bit xi, we have "xi = 1 -x i . Let .i be a bit vector of length w and
x = B2Tw(.?) be the two's-complement number it represents. By Equation 2.2,
the complemented bit vector "r7 has the following numeric value:

The key simplification in the preceding derivation is that ~:=!~2' = 2"-' - 1. It
follows that by incrementing -2 we obtain -x.

74 Chapter 2 Representing and Manipulating Information

Figure 2.20 Examples of complementing and incrementing four-bit numbers. The
effect is to compute the two's-value negation.

To increment a number x represented at the bit-level as 2 = [x,-~, x,-z, . . . ,
x o] , define the operation incr as follows: Let k be the position of the rightmost
zero, such that 2 is of the form [x , . ~ , xW-2, . . . , xk+l , O,1, . . . ,I]. We then de-
fine incr(;) to be x,-z, . . . , xk+l, 1, 0, . . . , 01. For the special case in which
the bit-level representation of x is [I, 1,. . . , I .] , define incr(;) to be [O, . . . ,0].
To show that incr(2) yields the bit-level representation of x +; 1, consider the
following cases:

1. When 2 = [l, 1, . .. , 11, we have x = -1. The incremented value incr(2) =
[O, . . . , 0] has numeric value 0.

2. When k = w - 1, i.e., 2 = [O, 1, . . . , I] , we have x = TMax,. The incremented
value incr(2) = [I, 0, . . . ,0] has numeric value T M i n , . From Equation 2.12,
we can see that TMax, +; 1 is one of the positive overflow cases, yielding
TMin, .

3. When k i w - 1, i.e., x # TMax, and x # -1, we can see that the low-order
k f 1 bits of incr(2) has numeric value 2', while the low-order k + 1 bits of
; has numeric value 2' = 2k - 1. The high-order w - k f 1 bits have
matching numeric values. Thus, incr(i) has numeric value x f 1. In addition,
for x # TMax,, adding 1 to x will not cause an overflow, and hence x +; 1
has numeric value x + 1 as well.

As illustrations, Figure 2.20 shows how complementing and incrementing affect
the numeric values of several four-bit vectors.

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 5 x , y 5 2, - 1 can be represented as w-bit
unsigned numbers, but their product x . y can range between 0 and (2 , - =
22w - 2,+' f 1. This could require as many as 2w bits to represent. Instead,
unsigned multiplication in C is defined to yield the w-bit value given by the low-
order w bits of the 2w-bit integer product. By Equation 2.7, this can be seen to
be equivalent to computing the product modulo 2,. Thus, the effect of the w-bit
unsigned multiplication operation *: is

Section 2.3 Integer Arithmetic 75

It is well known that modular arithmetic forms a ring. We can therefore deduce
that unsigned arithmetic over w-bit numbers forms a f i g ((0,. . . ,
2" - 11, +;, *;,, -;, 0 , l) .

2.3.5 Two's-Complement Multiplication

Integers x and y in the range -2"-' 5 x , y 5 2 W - 1 - 1 can be represented

as w-bit two's-complement numbers, but their product x . y can range between
- 2w-1 , (2x>-l - 1) = -22"-2 +. 2"-1 and -2"-1 . -2"-1 = 22"-2. This could
require as many as 2w bits to represent in two's-complement form-most cases
would fit into 2w - 1 bits, but the special case of 2'"-' requires the full 2w bits (to
include a sign bit of 0). Instead, signed multiplication in C generally is performed
by truncating the 2w-bit product to w bits. By Equation 2.8, the effect of the
w-bit two's-complement multiplication operation *; is

x *; y = U 2 T , ((x . y) mod 2w) (2.15)

We claim that the bit-level representation of the product operation is iden-
tical for both unsigned and two's-complement multiplication. ?hat is, given bit
vectors i and j, of length w, the bit-level representation of the un~i~nedproduct
B 2 U , (i) *; BZU,(;) is identical to the bit-level representation of the two's-
complement product B2T,(;) *; B ~ T , (;) . This implies that the machine can
use a single type of multiply instruction to multiply both signed and unsigned
integers.

To see this, let x = B ~ T , (;) and y = B2T,(;) be the two's-complement
values denoted by these bit patterns, and let x' = B2Uw(2) and y' = B2U,(;)
be the unsigned values. From Equation 2.3, we have x' = x t ~ , - ~ 2 " , and
y' = y t ~ ~ - 1 2 " . Computing the product of these values modulo 2" gives the
following:

(x' . y') mod 2" = [(x t ~ , - ~ 2 ") . (y t y,-12w)] mod 2"

= (x . y) mod 2" (2.16)

Thus, the low-order w bits of x . y and x' . y' are identical.
As illustrations, Figure 2.21 shows the results of multiplying different three-

bit numbers. For each pair of bit-level operands, we perform both unsigned and
two's-complement multiplication. Note that the unsigned truncated product al-
ways equals x . y mod 8 , and that the bit-level representations of both truncated
products are identical.

76 Chapter 2 Representing and Manipulating Information

Mode

Figure 2.21 Three-bit unsigned and two's-complement rnultipllcation examples.
Although the bit-level representations of the full products may differ, those of the truncated products
are identical.

Two's-Comp.
Unsigned
Two's-Comp. .
Unsigned
Two's-Comp.

Prob W 27
Fill in the following table showing the results of multiplying different three-bit
numbers, in the style of Figure 2.21:

Unsigned 5 [loll 1 3 [Oll] 1 15

--
x

-3 [loll
4 [loo]

-4 [loo]
3 [Oll]

Y

x I Y

We cansee that unsigned arithmetic and two's-complement arithmetic over w -
bit numbers are isomorphic-the operations +:, -U and *; have the exact same " :
effect at the bit level as do +:, , -:, and *:. From ths, wc can deduce that two's-
complement arithmetic forms a ring ((- 2 ~ - l , . . . ,2"-l - 11, +:,, *:, -',, 0 , l) .

3 [Oll]
7 [Ill]

-1 [Ill] -
3 [Oll]

X'Y I Truncated x . y

Two's-Comp. [001] [Ill]] - --
Unsigned [Ill] [Ill] 1

2.3.6 Multiplying by Powers of Two

3 [Oll] 3 [011]

Unsigned
I I Mode

([llO] ! [010] 1

Two's-Comp.

On most machines, the integer multiply instruction is fairly slow, requiring 12
or more clock cycles, whereas other integer operations-such as addition, sub-
traction, bit-level operations, and shifting-require only one clock cycle. As a
consequence, one important optimization used by compilers is to attempt to re-
place multiplications by constant factors with combinations of shift and addition
operations.

Let x be the unsignedinteger represented by bit pattern [x , - l , xu-2, . . . , xo].
Then for any k 0, we claim the bit-level representation of ~2~ is given by
[x , - ~ , x,-2,. . . , xo, 0 , . . . , O],where k 0s have beenaddedtotheright. Thisprop-
erty can be derived using Equation 2.1:

-9 [110111]
28 [OlllOO]
4 [000100]
9 [OOlOOl]

-1 [Il l]

4 [loo]
-4 [loo]

1 [OOl]
9 [aOlOOl]

[Ill]

1 [ool]

[Ill]

Section 2.3 Integer Arithmetic 77

For k < w , we can truncate the shifted bit vector to be of length w , giving
[xW-k-l, xw-k-2,. . . , X O , 0 , . . . ,111. By Equation 2.7, this bit-vector has numeric
value ~2~ mod 2w = x *: 2" Thus, for unsigned variable x, the C expression
x << k is equivalent to x * pwr2k, where pwr2k equals 2k. In particular, we
can compute pwr2k as 1U << k.

By similar reasoning, we can show that for a two's-complement number x
having bit pattern [x W - l , xw-2,. . . , xo] , and any k in the range 0 5 k < w , bit
pattern [x ~ - ~ - ~ , x o , 0 , 0] will be the two's-complement representation of
x *; 2 k . Therefore, for signed variable x ,the C expression x << k is equivalent
to x * pwr2k, where pwr2k equals 2k.

Note that multiplying by a power of 2 can cause overflow with either unsigned
or two's-complement arithmetic. Our result shows that even then we will get the
same effect by shifting.

As we will see in Chapter 3, the l e a l instruction on an Intel-compatible pro-
cessor can perform computations of the form a<<k + b, where k is either 0,
1, or 2, and b is either 0 or some program value. The compiler often uses this
instruction to perform multiplications by constant factors. For example, we can
compute 3 *a as a<<l + a.

What multiples of a can be computed with this instruction?

2.3.7 Dividing by Powers of Two

Integer division on most machines is even slower than integer multiplication-
requiring 30 or more clock cycles. Dividing by a power of 2 can also be per-
formed using shift operations, but we use a right shift rather than a left shift. The
two different shifts-logical and arithmetic-serve this purpose for unsigned and
two's-complement numbers, respectively.

Integer division always rounds toward zero. For x > 0 and y > 0 , the result
should be Lxly] , where for any real number a , La] is defined to be the unique
integer a' such that a' 5 a < a' + 1 . As examples 13.141 = 3 , 1-3.141 = -4 , and
131 = 3.

Consider the effect of performing a logical right shift on an unsigned number.
Let x be the unsigned integer represented by bit pattern x,-2, . . . , xo],
and k be in the range 0 5 k < w . Let x' be the unsigned number with w - k -

78 Chapter 2 Representing and Manipulating Information

bit representation [xu-1, xu-2, . . . , ~ k] , and x" be the unsigned number with k-bit
representation [xk-1, . . . , xo]. We claim that x' = 1 ~ ~ 2 ' 1 . To see this, by Equation

w-k-1 X i 2 i - k 2.1, we have x = C Y ~ ' xi2', x' = Cizk and xu = c'L-' x.2' . We can ,=O I

therefore write x as x = 2kx' + x N . Observe that 0 5 x" 5 J?;; 2' = 2k - 1 , and
hence0 5 x" < 2k,implyingthat L x " / ~ ~] = 0 . Therefore, ~ x / 2 ~] = L x ' + x " / ~ ~] =
X' + XI^/^^] = x' .

Observe that performing alogical right shift of bit vector [xw-1, xw-2, . . . , xo]
by k yields the bit vector

This bit vector has numeric value x'. That is, logically right shifting an unsigned
number by k is equivalent to dividing it by 2k. Therefore, for unsigned variable X,
the C expression x >> k is equivalent to x / pwr2k, where pwr2k equals 2 k .

Now consider the effect of performing an arithmetic right shift on a two's-
complement number. Let x be thz two's-complement integer represented by bit
pattern [xw-1, ~ ~ - 2 , . . . XO] , and k bein the range 0 5 k < w . Let x' be the two's-
complement number represented by the w - k bits [x , - 1 , x,-z, . . . , xk] , and x" be
the unsigned number represented by the low-order k bits [xk-1, . . . , x o] By a sim-
ilar analysis as the unsigned case, we have x = 2kx' + x u , and 0 5 x" < 2 k , giving
x i = 1 ~ / 2 ~] . Furthermore, observe that shifting bit vector [x , -1 . xw-2, . . . , xo]
right arithmetically by k yields the bit vector

which is the sign extension from w - k bits to w bits of [x , - ~ , xw-2, . . . , x k] . Thus,
this shifted bit vector is the two's-complement representation of Lxly].

For x 1 0 , our analysis shows that this shifted result is the desired value.
For x < 0 and y > 0 , however, the result of integer division should be r x l y l ,
where for any real number a , [a1 is defined to be the unique integer a' such that
a' - 1 < a 5 a'. That is, integer division should round negative results upward
toward zero. For example, the C expression -5 / 2 yields - 2 . Thus, right shifting a
negative number by k is not equivalent to dividing it by 2k when rounding occurs.
For example, the four-bit representation of -5 is [1011]. If we shift it right by
one arithmetically we get [1101], which is the two's-complement representation
of -3.

We can correct for this improper rounding by "biasing" the value before
shifting. This technique exploits the property that [x / y l = L(x + y - l) / y] for
integers x and y such that y > 0 . Thus, for x < 0 , if we first add 2k - 1 to x before
right shifting, we will get a correctly rounded result. This analysis shows that for
a two's-complement machine using arithmetic right shifts, the C expression

is equivalent to x /pwr2k , where pwr2k equals 2 k . For example, to divide -5
by 2 , we first add bias 2 - 1 = 1 giving bit pattern [1100]. Right shifting this
by' one arithmetically gives bit pattern [1110], which is the two's-complement
representation of -2.

Section 2.3 Integer Arithmetic 79

I In the following code, we have omitted the definitions of constants M and N:

#define M I * Mystery number 1 * I
#define N I * Mystery number 2 * I
int arith(int x, int y)
I
int result = 0;
result = x*M + y/N; 1" M and N are mystery numbers. * I

return result;
1

We compiled this code for particular values of M and N. The compiler op-
timized the multiplication and division using the methods we have discussed.
The following is a translation of the generated machine code back into C:

I * Translation of assembly code for arith * I
int optarith(int x, int y)
i
int t = x;
x <<= 4;
X -= t;
if (y < 0) y += 3;
y >>= 2 ; I * Arithmetic shift * I

return x+y;
1

What are the values of M and N?

Assume we are running code on a 32-bit machine using two's-complement arith-
metic for signed values. Right shifts are performed arithmetically for signed
values and logically for unsigned values. The variables are declared and initial-
ized as follows:

l int X : £00 () ; I * Arbitrary value * I
int y = bar(); I * Arbitrary value ' 1

unsigned ux = x;
unsigned uy = y;

For each of the following C expressions, either (1) argue that it is true
(evaluates to 1) for all values of x and y or (2) give values of x and y for which
it is false (evaluates to 0):

80 Chapter 2 Representing and Manipulating Information

2.4 Floating Point

Floating-point representation encodes rational numbers of the form V = x x 2 y .
It is useful for performing computations involving very large numbers (I V I >> O),
numbers very close to 0 (/VI << I) , and more generally as an approximation to
real arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions
for how floating-point numbers were represented and the details of the operations
performed on them. In addition, they often did not worry too much about the
accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a care-
fully crafted standard for representing floating-point numbers and the operations
performed on them. This effort started in 1976 under Intel's sponsorship with
the design of the 8087, a chip that provided floating-point support for the 8086
processor. They hired William Kahan, a professor at the University of California,
Berkeley, as a consultant to help design a floating-point standard for its future
processors. They allowed Kahan to join forces with a committee generating an
industry-wide standard under the auspices of the Institute of Electrical and Elec-
tronics Engineers (IEEE). The committee ultimately adopted a standard close to
the one Kahan had devised for Intel. Nowadays virtually all computers support
what has become known as IEEE floating point. This has greatly improved the
portability of scientific application programs across different machines.

Aside: The IEEE.

The Institute of Electrical and Electronic Engineers (IEEE-pronounced "I-Triple-E") is a professional society
that encompasses all of electronic and computer technology. It publishes journals, sponsors conferences,
and sets up committees to define standards on topics ranging from power transmission to software engi-
neering.

In this section, we will see how numbers are represented in the IEEE floating-
point format. We will also explore issues of rounding, when a number cannot be
represented exactly in the format and hence must be adjusted upward or down-
ward. We will then explore the mathematical properties of addition, multiplica-
tion, and relational operators. Many programmers consider floating point to be
at best uninteresting and at worst arcane and incomprehensible. We will see that

Section 2.4 Floating Point 81

1 since the IEEE format is based on a small and consistent set of principles, it is
I
I really quite elegant and understandable.
I
i
/
I 2.4.1 Fractional Binary Numbers

!
1 A lirst step in understanding floating-point numbers is to consider binary numbers
I ! having fr actional values. Let us Ls t examine the more familiar decimal notation.

Decimalnotationuses arepresentationof the form: d,,,dm-l . . . dl4.d-ld-2 . . . d-,, ,
where each decimal digit di ranges between 0 and 9. This notation represents a
number d defined as

!

r
The weighting of the digits is defined relative to the decimal point symbol '.,'
meaning that digits to the left are weighted by positive powers of 10, giving integral
values, while digits to the right are weighted by negative powers of 10, giving
fractional values. For example, 12.3410 represents the number 1 x lo1 $ 2 x 10' $

j 3 x lo-' $ 4 x 10-2 = 12%.

s By analogy, consider a notation of the form b,b,-l . . . blbO.b-lb-2.. . b-,, ,
where each binary digit, or bit, b, ranges betweenoand 1. This notation represents
a number b defined as

m

The symbol '.' now becomes a binary point, with bits on the left being weighted by
positive powers of two, and those on the right being weighted by negative powers
of two. For example, 101.112 represents the number 1 x 22 $ 0 x 2l $1 x 2' $

1 ~ 2 - ~ $ 1 ~ 2 - ~ = 4 $ 0 + 1 + ; $ ~ = 5 ~ ,
One can readily see from Equation 2.17 that shifting the binary point one

position to the left has the effect of dividing the number by two. For example,
while 101.112 represents the number 5:, 10.1112 represents the number 2 + 0 $

$ $ = 2;. Similarly, shifting the binary point one position to the right has
the effect of multiplying the number by two. For example, 1011.12 represents the
number8$0$2$1$ $ =11$.

" "

Note that numbers of the form 0.11.. . l2 represent numbers just below 1.
For example, 0.1111112 represents g. We will use the shorthand notation 1.0 - t
to represent such values.

Assuming we consider only finite-length encodings decimal notation cannot
represent numbers such as f and exactly. Similarly, fractional binary notation
can only represent numbers that can be written x x 2Y. Other values can only be
approximated. For example, although the number 4 can be approximated with
increasing accuracy by lengthening the binary representation, we cannot represent
it exactly as a fractional binary number:

82 Chapter 2 Representing and Manipulating Information

I Representation I Value I Decimal

. , . ~

Fill in the missing information in the following table:

The imprecision of floating-point arithmetic can have disastrous effects. On
February 25,1991, during the Gulf War, an American Patriot Missile battery in
Dharan, Saudi Arabia, failed to intercept an incoming Iraqi Scud missile. The
Scud struck an American Army barracks and killed 28 soldiers. The U. S. Gen-
eral Accounting Office (GAO) conducted a detailed analysis of the failure [52]
and determined that the underlying cause was an imprecision in a numeric
calculation. In this exercise, you will reproduce part of the GAO's analysis.

The Patriot system contains an internal clock, implemented as a counter
that is incremented every 0.1 seconds. To determine the time in seconds, the
program would multiply the value of this counter by a 24-bit quantity that was a
fractional binary approximation to &. In partic&r, the binary representation
of & is the nonterminating sequence

Decimal representation

0.25

Fractional value
1
4

?

Binary representation

0.01

Section 2.4 Floating Point 83

where the portion in brackets is repeated indefinitely. The computer approxi-
mated 0.1 using just the leading bit plus the first 23 bits of this sequence to the
right of the binary point. Let us call this number x .

(A. What is the binary representation of x - 0.1?

I B What is the approximate decimal value of x - 0.11

C. The clock starts at 0 when the system is first powered up and keeps counting
up from there. In this case, the system had been running for around 100
hours. What was the diierence between the time computed by the software
and the actual time?

D. The system predicts where an incoming missile will appear based on its
velocity and the time of the last radar detection. Given that a Scud travels
at around 2,000 meters per second, how far off was its prediction?

Normally, a slight error in the absolute time reported by a clock reading would
not affect a tracking computation. Instead, it should depend on the relative time
between two successive readings. The problem was that the Patriot software
had been upgraded to use a more accuratefunction for reading time, but not
all of the function calls had been replaced by the new code. As a result, the
tracking software used the accurate time for one reading and the inaccurate
time for the other [71].

2.4.2 IEEE Floating-Point Representation

Positional notation such as considered in the previous section would not be ef-
ficient for representing very large numbers. For example, the representation of
5 x 21m would consist of the bit pattern 101 followed by 100 zeros. Instead, we
would like to represent numbers in a form x x 2r by giving the values of x and y .

The IEEE floating-point standard represents a number in a form V = (-1)" x
M x 2E :

The sign s determines whether the number is negative (s = 1) or positive
(s = 0), where the interpretation of the sign bit for numeric value 0 is
handled as a special case.
The significand M is a fractional binary number that ranges either between
1 and 2 - E or between 0 and 1 - E.

The exponent E weights the value by a (possibly negative) power of 2.

The bit representation of a floating-point number is divided into three fields
to encode these values:

The single sign bit s directly encodes the sign s .
The k-bit exponent field exp = ek-1. . . eleo encodes the exponent E.
The n-bit fraction field frac = f,-l . . . fi fa encodes the significand M ,
but the value encoded also depends on whether or not the exponent field
equals 0.

In the single-precision floating-point format (a float in C), fields s, exp,
and frac are 1, k = 8, and n = 23 bits each, yielding a 32-bit representation.

84 Chapter 2 Representing and Manipulating Information

In the double-precision floating-point format (a double in C), fields s, exp, and
frac are 1, k = 11, and n = 52 bits each, yielding a 64-bit representation.

The value encoded by a given bit representation can be divided into three
different cases, depending on the value of exp;

Normalized Values

This is the most common case. These kinds occur when the bit pattern of exp is
neither all 0s (numeric value 0) nor aU 1s (numeric value 255 for single precision,
2047 for double). In this case, the exponent field is interpreted as representing a
signed integer in biased form. That is, the exponent value is E = e - Bias where e
is the unsigned number having bit representation ek-1 . . . eleo, and Bias is a bias
value equal to 2k-1 - 1 (127 for single precision and 1023 for double). This yields
exponent ranges from -126 to +I27 for singleprecision and -1022 to +I023 for
double precision.

The fraction field f rac is interpreted as representing the fractional value f,
where 0 5 f < 1 , having binary representation 0. f,-l . . . f l fo , that is, with the
binary point to the left of the most significant bit. The significand is defined to be
M = 1 + f . This is sometimes called an implied leading1 representation, because
we can view M to be the number with binary representation 1. f,-l fn -z . . . fo.
This representation is a trick for getting an additional bit of precision for free,
since we can always adjust the exponent E so that significand M is in the range
1 5 M < 2 (assuming there is no overflow). We therefore do not need to explicitly
represent the leading bit, since it always equals 1.

Denormalized Values

When the exponent field is all Os, the represented number is in denormalized
form. In this case, the exponent value is E = 1 - Bias, and the significand value
is M = f , that is, the value of the fraction field without an implied leading 1.

Aside: Why set the bias this way for denormalized values?

Having the exponent value be 1 - Bias rather than simply -Bias might seem counterintuitive. We will
see shortly that it provides for smooth transition from denormalized to normalized values.

Denormalized numbers serve two purposes. First, they provide a way to
represent numeric value 0, since with a normalized number we must always have
M L 1, and hence we cannot represent 0. In fact the floating-point representation
of +0.0 has a bit pattern of all 0s: the sign bit is 0, the exponent field is all 0s
(indicatinga denormalized value), and the fraction field is allOs, giving M = f = 0.
Curiously, when the sign bit is 1, but the other fields are all Os, we get the value
-0.0. With IEEE floating-point format, the values -0.0 and +O.O are considered
different in some nays and the same in others.

A second function of denormalized numbers is to represent numbers that are
very close to 0.0. They provide a property known as gradual underflow in which
possible numeric values are spaced evenly near 0.0.

Section 2.4 Floating Point 85

Special Values

A final category of values occurs when the exponent field is all 1s. When the
fraction field is all Os, the resulting values represent infinity, either t c o when
s = 0, or -co when s = 1. Infinity can represent results that overfiow, as when
we multiply two very large numbers, or when we divide by zero. When the fraction
field is nonzero, the resulting value is called a "NaN," short for "Not a Number."
Such values are returned as the result of an operation where the result cannot be
given as a real number or as infinity, as when computing f i or co - co. They
can also be useful in some applications for representing uninitialized data.

2.4.3 Example Numbers

Figure 2.22 shows the set of values that can be represented in a hypothetical
6-bit format having k = 3 exponent bits and n = 2 significand bits. The bias is
Z3-' - 1 = 3. Part A of the figure shows all representable values (other than
NaN). The two infinities are at the extreme ends. The normalized numbers with
maximum magnitude are H 4 . The denormalized numbers are clustered around
0. These can be seen more clearly in part B of the figure, where we show just the
numbers between -1.0 and t1.0. The twozeros are special cases of denormalized
numbers. Observe that the representable numbers arenot uniformly distributed-
they are denser nearer the origin.

Figure 2.23 shows some examples for a hypothetical eight-bit floating-point
format having k = 4 exponent bits and n = 3 fraction bits. The biasis 24-' -1 = 7.
The figure is divided into three regions representing the three classes of numbers.
Closest to 0 are the denormalized numbers, starting with 0 itself. Denormalized
numbers in this format have E = 1 - 7 = -6, giving a weight 2E = &. The
fractions f range over the values 0, i, . . . , i, giving numbers V in the range 0 to

7 7

A. Complete range

I , - " - - - - - - - - - 4
-m -10 -5 0 +5 +I0 +m

1 r Denormalized A Normalized m Infinity 1

B. Values between -1.0 and +1 .O.

I -0 to I

I * Denormalized A Normalized rn Infinity 1
Figure 2.22 Representable values for six-bit floating-point format. There are k = 3
exponent bits and n = 2 significand bits. The bias is 3.

86 Chapter 2 Representing and Manipulating Information

Description Bit representation e E f M V

Zero 0 0000 000 0 - 6 0 0 0

Smallest pos. 0 0000 001 1 1 1 0 -6 g B 512

0 0000 010 2 0 -6 g 2 2 s -
512

0 0000 011 3 0 -6 g 3 3 s -
. . . 512

0 0000 110 6 0 -6 g 6 6 -
8 512

) Largest denorm. 0 0000 111 0 -6 a 1 P C17
7 7 -

I Smallest norm. o 0001 000 1 - 6 0 : - 512 8

0 0110 110 14 6 - 6 -1 1 14
8 i?i

0 0110 111 15 7 - 6 -1 15 -
8 16

One 0 0111 000 7 0 0 ; 1

0 0111 001 7 0 1 9 9
B 8

0 0111 010 7 0 ; - 8 - 10 8 10

. . .

Largest norm. 0 1110 111 14 7 ; 240

Infinity 0 1111 000 - - - - +a,

Figure 2.23 Example nonnegative values for eight-bit floating-point format.
There are k = 4 exponent bits and n = 3 significand bits. The bias is 7.

The smallest normalized numbers in this format also have E = 1 - 7 = -6,
and the fractions also range over the values 0, i, . . . i. However, the significands

8 then range from 1 + 0 = 1 to 1 + i = f , giving numbers V in the range 312 to
15 -
512 '

Observe the smooth transition between the largest denormalized number
and the smallest normalized number &. This smoothness is due to our definition
of E for denormalized values. By making it 1 - Bias rather than -Bias, we
compensate for the fact that the significand of a denormalized number does not
have an implied leading 1.

As we increase the exponent, we get successively larger normalized values,
passing through 1.0 and then to the largest normalized number. This number
has exponent E = 7, giving a weight 2E = 128. The fraction equals giving
a significand M = :. Thus, the numeric value is V = 240. Going beyond this
overflows to +w.

One interesting property of this representation is that if we interpret the bit
representations of the values in Figure 2.23 as unsigned integers, they occur in
ascending order, as do the values they represent as floating-point numbers. This is

Section 2.4 Floating Point 87

no accident-the IEEE format was designed so that floating-point numbers could
be sorted using an integer-sorting routine. A minor difficulty occurs when dealing
with negative numbers, since they have a leading 1, and they occur in descending
order, but this can be overcome without requiring floating-point operations to
perform comparisons (see Problem 2.56).

Consider a five-bit floating-point representation based on the IEEE floating-
point format, with one sign bit, two exponent bits (k = 2), and two fraction
bits (n = 2). The exponent bias is 2'-' - 1 = 1.

The table that follows enumerates the entire nonnegative range for this
five-bit floating-point representation. Fill in the blank table entries using the

e : The, value represented by considering the exponent field to be an un-

E: The value of the exponent after biasing.

f : The value of the fraction.

M: The value of the sigmficand.

V: The numeric value represented.

Express the values of f , M and V as fractions of the form a. You need
not fill in entries marked "-".

88 Chapter 2 Representing and Manipulating Information

I
Largest norm. 1 11.. .10 1.. .11 (2 - E) 1 3.4 lo38 1 (2 - €1 21023 1.8 lo300

Description

Zero
Smallest denorm.
Largest denorm.
Smallest norm.
One

Figure 2.24 Examples of nonnegative floating-point numbers.

Figure 2.24 shows the representations and numeric values of some important
single and double-precision floating-point numbers. As with the eight-bit format
shown in Figure 2.23 we can see some general properties for a floating-point
representation with a k-bit exponent and an n-bit fraction:

exp

OO.. .OO
00.. .00
00.. .00
00...01
01...11

The value fO.0 always has a bit representation of all 0s.
The smallest positive denormalized value has a bit representation consisting
of a 1 in the least significant bit position and otherwise all 0s. It has a fraction
(and significand) value M = f = 2-" and an exponent value E = -2k-1 f2 .

The numeric value is therefore V = 2-n-2k-1+2.
The largest denormalied value has a bit representation consisting of an
exponent field of all 0s and a fraction field of all 1s. It has a fraction (and
significand) value M = f = 1 - 2-" (which we have written 1 - E) and
an exponent value E = -2!'-l f 2. The numeric value is therefore V =

k-1 2
(1-2-") x2-2 + , whichis just slightly smaller thanthesmallest normalized
value.
The smallest positive normalized value has a bit representation with a 1 in
the least significant bit of the exponent field and otherwise all 0s. It has a
significand value M = 1 and an exponent value E = -2!'--' f 2. 'Ihe numeric
value is therefore V = 2-2k-1+2.
The value 1.0 has a bit representation with all but the most significant bit
of the exponent field equal to 1 and all other bits equal to 0. Its significand
value is M = 1 and its exponent value is E = 0.
The largest normalized value has a bit representation with a sign bit of 0,
the least significant bit of the exponent equal to 0, and all other bits equal to
1. It has a fraction value of f = 1 - 2-" , giving a significand M = 2 - 2-"
(which we have written 2 - E). It has an exponent value E = 2k-1 - 1, giving
a numeric value V = (2 - 2-") x 2

2k-1-1 = (1 - 2-"-1) 22k-~'

One useful exercise for understanding floating-point representations is to con-
vert sample integer values into floating-point form. For example, we saw in Fig-
ure 2.10 that 12,345 has binary representation [11000000111001]. We create a nor-
malized representation of this by shifting 13 positions to the right of a binary point,
giving 12345 = 1.10000001110012 x 2". To encode this in IEEE single precision

f rac

O.. .OO
0.. .01
1.. .I1
0.. .00
0...00

Single precision Double precision
Value

0
2-23 x 2-126

(1 - 6) x 2-lZ6
1 x 2-lZ6
1 x 2O

Decimal
0.0

1.4 x 10-45
1.2 x
1.2 lo-3a

1.0

Value
0

2-52 x 2-1022

(1 - 6) x 2-1022

Decimal
0.0

4.9
2.2 x

1 2-1022 2.2 lo-30a
l x 2 O 1.0

Section 2.4 Floating Point 89

format, weconstruct the fraction field by dropping the leading1 and adding10Os to
the end, giving binary representation [10000001110010000000000]. To construct
the exponent field, we add bias 127 to 13, giving 140, which has binary represen-
tation [10001100]. We combine this with a sign bit of 0 to get the floating-point
representation in binary of [0100011001000000111001OOM)OOOOOO]. Recall from
Section2.1.4 that we observed the following correlationin the bit-level representa-
tions of the integer value 1 2 3 4 5 (0x3 03 9) and the single-precision floating-point

!
I

value 12345.0 (0x4640~400):

1 We can now we that the region of correlation corresponds to the low-order bits of
i the integer, stopping just before the most significant bit equal to 1 (this bit forms
i
i

the implied leading I), matching the high-order bits in the fraction part of the

[floating-point representation.

I
!
i

1
I

t
I

1 2.4.4 Rounding
!

As mentioned in Practice Problem 2.6, the integer 3490593 has hexadecimal
representation 0x354321, while the single-precision, floating-point number
3490593.0 has hexadecimal representation Ox4A55OC84. Derive this floating-
point representation and explain the correlation between the bits of the integer
and floating-point representations.

I
1
1

Floating-point arithmetic can only approximate real arithmetic, since the repre-
sentation has limited range and precision. Thus, for a value x , we generally want
a systematic method of finding the "closest" matching value x' that can be rep-
resented in the desired floating-point format. This is the task of the rounding
operation. The key problem is to define the direction to round a value that is
halfway between two possibilities. For example, if I have $1.50 and want to round
it to the nearest dollar, should the result be $1 or $2? An alternative approach is
to maintain a lower and an upper bound on the actual number. For example, we
could determine representable values x - and x+ such that the value x is guaran-

A. For a floating-point format with a k-bit exponent and an n-bit fraction,
give a formula for the smallest positive integer that cannot be represented
exactly (because it would require an n f I-bit fraction to be exact).

B. What is the numericvalue of this integer (k = 8,
n = 23)?

i Practice Problem 2.35

90 Chapter 2 Representing and Manipulating Information

Mode 1 $1.40 $1.60 1 $1.50 1 $2.50 1 $-1.50

I 1- $2 $7-2

Figure 2.25 Illustration of rounding modes for dollar rounding. The first rounds to a
nearest value, while the other three bound the result above or below.

teed to lie between them: x - i x 5 xt . The IEEE floating-point format defines
four different rounding modes. The default method finds a closest match, while
the other three can be used for computing upper and lower bounds.

Figure 2.25 illustrates the four rounding modes applied to the problem of
rounding a monetary amount to the nearest whole dollar. Round-to-even (also
called round-to-nearest) is the default mode. It attempts to find a closest match.
Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effect of rounding values
that are halfway between two possible results. Round-to-even mode adopts the
convention that it rounds the number either upward or downward such that the
least significant digit of the result is even. Thus, it rounds both $1.50 and $2.50
to $2.

The other three modes produce guaranteed bounds on the actual value. These
can be useful in some numerical a~~lications. Round-toward-zero mode rounds . .
positive numbers downward and negative numbers upward, giving a value f such
that 19) 5 1x1. Round-down mode rounds both positive and negative numbers
downward, giving a value x - such that x - 5 x . Round-up mode rounds both
positive and-negative numbers upward, giving a value xt such that x 5 xt .

Round-to-even at first seems like it has a rather arbitrary goal-why is there
any reason to prefer even numbers? Why not consistently round values halfway
between two representable values upward? The problem with such a convention
is that one can easily imagine scenarios in which rounding a set of data values
would then introduce a statistical bias into the computation of an average of the
values. The average of a set of numbers that we rounded by this means would
be slightly higher than the average of the numbers themselves. Conversely, if
we always rounded numbers halfway between downward, the average of a set of
rounded numbers would be slightly lower than the average of the numbers them-
selves. Rounding toward even numbers avoids this statistical bias in most real-Me
situations. It will round upward about 50% of the time and round downward
about 50% of the time.

Round-to-even rounding can be applied even when we are not rounding to
a whole number. We simply consider whether the least significant digit is even
or odd. For example, suppose we want to round decimal numbers to the nearest
hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless
of rounding mode, since they are not halfway between 1.23 and 1.24. On the other
hand, we would round both 1.2350000 and 1.2450000 to 1.24, since four is even.

Section 2.4 Floating Point 91

Similarly, round-to-even rounding can be applied to binary fractional num-
bers. We consider least significant bit value 0 to be even and 1 to be odd. In
general, the rounding mode is only significant when we have a bit pattern of the
-form XX . . . X.Y Y . . . Y 100. . ., where X and Y denote arbitrary bit values with
the rightmost Y being the position to which we wish to round. Only bit patterns
of this form denote values that are halfway between two possible results. As ex-
amples, consider the problem of rounding values to the nearest quarter (i.e., 2 bits
to the right of the binary point). We would round 10.000112 (2$) down to 10.002
(2), and 10.001102 (2;) up to 10.012 (2 3) , because these values are not halfway
between two possible values. We would round 10.111002 (2 i) up to 11.002 (3)
and 10.101002 down to 10.102 (2+), since these values are halfway between two
possible results, and we prefer to have the least significant bit equal to zero.

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arith-
metic operation such as addition or multiplication. Viewing floating-point values
x and y as real numbers, and some operation @ defined over real numbers, the
computation should yield Round(x @ y) , the result of applying rounding to the
exact result of the real operation. In practice, there are clever tricks floating-point
unit designers use to avoid performing this exact computation, since the corupu-
tation need only be sufficiently precise to guarantee a correctly rounded result.
When one of the arguments is a special value such as -0, co, or NUN, the standard
specifies conventions that attempt to be reasonable. For example I/ -0 is defined
to yield -co, while 1/ + 0 is defined to yield +m.

One strength of the IEEE standard's method of specifying the behavior of
floating-point operations is that it is independent of any particular hardware or
software realization. Thus, we can examine its abstract mathematical properties
without considering how it is actually implemented.

We saw earlier that integer addition, both unsigned and two'scomplement,
forms an Abelian group. Addition over real numbers also forms an Abelian
group, but we must consider what effect rounding has on these properties. Let
us define x ti y to be Round(x + y). This operation is defined for all values of
x and y , although it may yield infinity even when both x and y are real numbers
due to overflow. The operation is commutative, with x tf y = y +' x for all values
of x and y. On the other hand, the operation is not associative. For example,
with single-precision floating point the expression (3 . 1 4 t l e 1 0) -1e10 woild
evaluate to 0.0-the value 3.14 would be lost due to rounding. On the other
hand, the expression 3 . 1 4 t (le10-le10) would evaluate to 3 .14. As with an
Abelian group, most values have inverses under floating-point addition, that is,
x tf -x = 0. The exceptions are infinities (since +co - co = NUN), and NaN's,
since NUN tf x = NUN for any x.

The lack of associativity in floating-point addition is the most important group
property that is lacking. It has important implications for scientific programmers
and compiler writers. For example, suppose a compiler is given the following code
fragment:

92 Chapter 2 Representing and Manipulating Information

The compiler might be tempted to save one floating-point addition by generating
the following code:

However, this computation might yield a different value for x than would the
original, since it uses a different association of the addition operations. In most
applications, the difference would be so small as to be inconsequential. Unfor-
tunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original pro-
gram. As a result, they tend to be very conservative, avoiding any optimizations
that could have even the slightest effect on functionality.

On the other hand, floating-point addition satisfies the following monotonicity
property: if a ? b then x + a 2 x + b for any values of a , b , and x other than
NaN. This property of real (and integer) addition is not obeyed by unsigned or
two's-complement addition.

Floating-point multiplication also obeys many of the properties one normally
associates with multiplication, namely those of a ring. Let us define x *' y to
be Round(x x y) . This operation is closed under multiplication (although possi-
bly yielding infinity or NaN), it is commutative, and it has 1.0 as a multiplicative
identity. On the other hand, it is not associative due to the possibility of over-
flow or the loss of precision due to rounding. For example, with single-precision
floating point, the expression (l e 2 O * l e 2 0) * l e - 2 0 will evaluate to +m, while
l e 2 0 * (l e 2 0 * l e - 2 0) will evaluate to l e 2 0 . In addition, floating-point mul-
tiplication does not distribute over addition. For example, with single-precision
floating point, the expression le2O* (le2O-le2O) will evaluate to 0 . 0 , while
le2O*le2O-le2O*le2O will evaluate to NaN.

On the other hand, floating-point multiplication satisfies the following mono-
tonicity properties for any values of a , b , and c other than NaN:

a 2 b and c > O =+ a * f c > _ b * f c
a 2 b and c < O + a * ' c ~ b * ' c

In addition, we are also guaranteed that a *' a 1 0 , as long as a # NUN. As
we saw earlier, none of these monotonicity properties hold for unsigned or two's-
complement multiplication.

This lack of associativity and distributivity is of serious concern to scientific
programmers and to compiler writers. Even such a seemingly simple task as
writing code to determine whether two lines intersect in three-dimensional space
can be a major challenge.

2.4.6 Floating Point in C

C provides two different floating-point data types: f l o a t and d o u b l e . On
machines that support IEEE floating point, these data types correspond to single-

Section 2.4 Floating Point 93

and double-precision floating point. In addition, the machines use the round-
to-even rounding mode. Unfortunately, since the C standard does require the
machme use IEEE floating point, there are no standard methods to change the
rounding mode or to get special values such as -0, t o o , -oo, or NUN. Most
systems provide a combination of include (' . h') files and procedure libraries to
provide access to these features, but the details vary from one system to another.
For example, the GNU compiler GCC defines macros INFINITY (for + w) and
NAN (for NUN) when the following sequence occurs in the program file:

Practice P r o M d 3 6
Fill in the following macro definitions to generate the double-precision values
+ w , -03, and 0.

#define POS-INFINITY
#define NEG-INFINITY
#define NEG-ZERO
#endi f

You cannot use any include files (such as math. h), but you can make use
of the fact that the largest finite number that can be represented with double
precision is around 1.8 x 10308.

Whencasting values between int, float, and double formats, the program
changes the numeric values and the bit representations as follows (assuming a 32-
bit int):

From int to float, the number cannot overflow, but it may be rounded.
From int or float to double, the exact numeric value can be preserved
because double has both greater range (i.e., the range of representable
values), as well as greater precision (i.e., the number of significant bits).
From double to float, the value can overflow to t o o or -w , since the
range is smaller. Otherwise, it may be rounded, because the precision is
smaller.
From float or double to int the value will be truncated toward zero.
For example, 1.999 will be converted to 1, while -1.999 will be converted to
-1. Note that this behavior is very different from rounding. Furthermore,
the value may overflow. The C standard does not specify a fixed result for
this case, but on most machines the result will either be TMnr, or TMin,,
where w is the number of bits in an int.

'Intel IA32 Floating-Point Arithmetic

In the next chapter, we will begin an in-depth study of Intel IA32 processors, the
processor found in most of today's personal computers. Here we highlight an

94 Chapter 2 Representing and Manipulating Information

idiosyncrasy of these machines that can seriously affect the behavior of programs
operating on floating-point numbers when compiled with GCC.

IA32 processors, like most other processors, have special memory elements
called registers for holding floating-point values as they are being computed and
used. Values held in registers can be read and written more quickly thanthose
held in the main memory. The unusual feature of IA32 is that the floating-point
registers use a special 80-bit extended-precision format to provide a greater range
and precision than the normal 32-bit single-precision and 64-bit double-precision
formats used for values heldin memory. As described in Homework Problem 2.58,
the extended-precision representation is similar to an IEEE floating-point format
with a 15-bit exponent (i.e., k = 15) and a 63-bit fraction (i.e., n = 63). All single
and double-precision numbers are converted to this format as they are loaded
from memo^ into floating-point registers. The arithmetic is always performed in
extended precision. Numbers are converted from extended precision to single or
double-precision format as they are stored in memory.

This extension to 80 bits for all register data and then contraction to a smaller
format for all memory data has some undesirable consequences for programmers.
It means that storing a value in memory and then retrieving it can change its value,
due to rounding, underflow, or overflow. This storing and retrieving is not always
visible to the C programmer, leading to some very peculiar results.

The following example illustrates this property:

double recip(int denom)

{

return l.O/idouble) denom;
1

void do-nothing0 I1 / * Just like the name says ' /

void testl(int denom)

{

do~ble 1-1, 1-2;
int tl, t2;

rl = recip(den0m); / * Stored ir, memory * I
1-2 = recip (denom) ; / * Stored ir, register * /
tl = rl == r2; / * Compares resister to memory +/
do-nothing () ; / * Forces register save to memory * /
t2 = rl == r2; / * Compares memory to memory * I
printf("test1 tl: rl % f %c= 1-2 %£\nu, rl, tl ? ' = ' : ' ! ' , r2);
printf("test1 t2: rl %f %c= 1-2 %£\nN, rl, t2 ? ' = ' : ' ! ' , r2);

1

Variables rl and r2 are computed by the same function with the same argument.
One would expect them to be identical. Furthermore, both variables tl and t2 3
are computing by evaluating the expression rl == r2, and so we would expcct

Section 2.4 Floating Point 95

them both to equal 1. There are no apparent hidden side effects-function recip - -

does a straightforward reciprocal computation, and, as the name suggests, function
dono th ing does nothing. When the file is compiled with optimization flag '-02'
and run with argument 10, however, we get the following result:

t es t l tl: r l 0 . 1 0 0 0 0 0 != r 2 0 . 1 0 0 0 0 0
t es t l t 2 : rl 0 . 1 0 0 0 0 0 == r 2 0 . 1 0 0 0 0 0

The first test indicates the two reciprocals are different, while the second in-
dicates they are the same! This is certainly not what we expect, nor what we want.
Understanding all of the details of this example requires studying the machine-

I level floating-point code generated by GCC (see Section 3.14), but the comments
in the code provide a clue as to why this outcome occurs. The value computed by
function recip returns its result in a floating-point register. Whenever procedure
t es t 1 calls some function, it must store any value currently in a floating-point reg-

I ister onto the main program stack, where local variables for a function are stored.
In performing this store, the processor converts the extended-precision register
values to double-precision memory values. Thus, before making the second call to
recip (line 141, variable r l is converted and stored as a double-precision num-
ber. After the second call, variable r 2 has the extended-precision value returned
by the function. In computing tl (line 15), the double-precision number r l is
compared to the extended-precision number 1-2. Since 0.1 cannot be represented
exactly in either format, the outcome of the test is false. Before calling function
d o n o t h i n g (line 16), r 2 is converted and stored as a double-precision number.
In computing t 2 (line 17), two double-precision numbers are compared, yielding
true.

This example demonstrates a deficiency of GCC on IA32 machines (the same
result occurs for both Linux and Microsoft Windows). The value associated with
a variable changes due to operations that are not visible to the programmer, such

I as the saving and restoring of floating-point registers. Our experiments with the
Microsoft Visual C++ compiler indicate that it does not have this problem.

Aside: Why should we be concerned about these inconsistencies?

As we will discuss in Chapter 5, one of the fundamental principles of optimizing compilers is that programs
should produce the exact same result5 whether or not optimization is enabled. Unfortunately, ccc does
not satisfy this requirement for floating-point code on IA32 machines.

There are several ways to overcome this problem, although none are ideal.
The simplest is to invoke GCC with the command-line option "- f f l o a t - s to ren
indicating that the result of every floating-point computation should be stored to
memory and read back before using, rather than simply held in a register. This
will force every computed value to be converted to the lower-precision form. This
slows down the program somewhat but makes the behavior more predictable.
Unfortunately, we have found that ccc does not follow this write-then-read con-
vention strictly, even when given the command-line option. For example, consider
the following function:

96 Chapter 2 Representing and Manipulating Information

void test2(int denom)
{
double rl;
int tl;
rl = recip (denom) ; / * Default: register, Forced store: memory ' 1
tl = rl == 1 .O/ (double) denom; I * Compares register or memory to register * I
printf("test2 tl: rl %f %c= 1.0/10.0\nU, rl, tl ? ' = ' : ' ! ') ;

When compiled with just the "-02" option, tl gets value 1-the comparison is
made between two register values. When compiled with the "-f float-store"
flag, tl getsvalue O! Although the result of the call to recip is written to memory
and read back into a register, the computed value 1 . 0 1 (double) denomis kept
in a register. Overall, we have found that seemingly minor changes in a program
can cause these tests to succeed or fail in unpredictable ways.

As an alternative, we can have GCC use extended precision in all of its com-
putations by declaring all of the variables to be long double as shown in the
following code:

codefdala/fcornp.c

1 long double recip-l(int denom)

return l.O/(long double) denom;
1

void test3(int denom)
i
long double rl, r2;
int tl, t2, t3;

rl = recip-1 (denom) ; I * stored in memory * I
r2 = recip-1 (denom); I * Stored in register * I
tl = rl == r2; / * Compares register to memory * I
do-nothing () ; I * Forces register save to memory * I
t2 = rl == r2; / * Compares memory to memory ' I
t3 = rl == 1.01 (long double) denom; I * Compare memory to register ' I
printf("test3 tl: rl %f %c= 1-2 %£\nu,

(double) rl, tl ? ' = ' : I ! ' , (double) r2);
printf("test3 t2: rl %f %c= r2 %f\nW,

(double) rl, t2 ? ' = ' : ' ! ' , (double) 12);
printf("test3 t3: rl %f %c= 1.0/10.0\n",

(double) rl, t2 ? ' = ' : ' ! ' I ;
1

Section 2.4 Floating Point 97

The declaration long double is allowed as part of the ANSI C standard, al-
though for most machines and compilers, this declaration is equivalent to an ordi-
nary double. For GCC on IA32 machines, however, it uses the extended-precision
format for memory data as well as for floating point register data. This allows us
to take full advantage of the wider range and greater precision provided by the
extended-precision format while avoiding the anomalies we have seen in our ear-
lier examples. Unfortunately, this solution comes at a price. Gcc uses 12 bytes
to store a long double, increasing memory consumption by 50%. (Although 10
bytes would suffice, it rounds this up to 12 to give a better memory performance.
The same allocation is used on both L i u x and Widows machines.) Transferring
these longer data between registers and memory takes more time, too. Still, this
is the best option for programs that want to get the most accurate and predictable
results.

Aside: Ariane 5: the high cost of floating-point overflow.

Converting large floating-point numbers to integers is a common source of programming errors. Such'
an error had disastrous consequences for the maiden voyage of the Ariane 5 rocket, on June 4,1996. Just
37 seconds after liftoff, the rocket veered off its flight path, broke up, and exploded. Communication
satellites valued at $500 million were on board the rocket.

A later investigation [49] showed that the computer controlling the inertial navigation system had sent
invalid data to the computer controlling the engine nozzles. Instead of sending flight control information,
it had sent a diagnostic bit pattern indicating that an overflow had occurred during the conversion of a
64-bit floating-point number to a 16-bit signed integer.

The value that overflowed measured the horizontal velocity of the rocket, which could be more than
five times higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4 software,
they had carefully analyzed the numeric values and determined that the horizontal velocity would never
overflow a 16-bit number. Unfortunately, they simply reused this part of the software in the Ariane 5
without checking the assumptions on which it had been based.

PractWroMem 2.37
Assume variables x, f , and dare of type i n t , f l o a t , and double,respectively.
Their values are arbitrary, except that neither f nor d equals +co, -m, or NUN.
For each of the following C expressions, either argue that it will always be true
(i.e., evaluate to 1) or give a value for the variables such that it is not true (i.e.,

1 evaluates to 0).

A. x == (i n t) (f l o a t) x

B. x == (i n t) (doub le) x

C. f == (f l o a t) (double) f

D. d == (f l o a t) d

98 Chapter 2 Representing and Manipulating Information

2.5 Summary

Computers encode information as bits, generally organized as sequences of bytes.
Different encodings are used for representing integers, real numbers, and charac-
ter strings. Different models of computers use different conventions for encoding
numbers and for ordering the bytes withii multibyte data.

The C language is designed to accommodate a wide range of different imple-
mentations in terms of word sizes and numeric encodigs Most current machines
have 32-bit word sizes, although high-end machines increasingly have 64-bit words.
Most machines use two's-complement encoding of integers and IEEE encoding
of floating point. Understanding these encodings at the bit level, as well as un-
derstanding the mathematical characteristic~ of the arithmetic operations, is im-
portant for writing programs that operate correctly over the full range of numeric
values.

The C standard dictates that when casting between signed and unsigned in-
tegers, the underlying bit pattern should not change. On a two's-complement
machine, this behavior is characterized by functions T 2 U w and U 2 T w , for a w -
bit value. The implicit casting of C gives results that many programmers do not
anticipate, often leading to program bugs.

Due to the iinite lengths of the encodings, computer arithmetic has properties
quite different from conventional integer and real arithmetic. The finite length
can cause numbers to overflow, when they exceed the range of the representation.
Floating-point values can also underflow, when they are so close to 0.0 that they
are changed to zero.

The finite integer arithmetic implemented by C, as well as most other pro-
gramming languages, has some peculiar properties compared to true integer arith-
metic. For example, the expression x*x can evaluate to a negative number due
to overflow. Nonetheless, both unsigned and two's-complement arithmetic sat-
isfies the properties of a ring. This allows compilers to do many optimizations.
For example, in replacing the expression 7*x by (x<<3) -x, we make use of the
associative, commutative and distributive properties, along with the relationship
between shifting and multiplying by powers of two.

We have seen several clever ways to exploit combinations of bit-level opera-
tions and arithmetic operations. For example, we saw that with two's-complement

Chapter 2 Homework Problems 99

arithmetic, "xtl is equivalent to -x. As another example, suppose we want a bit
pattern of the form [O, . . . ,0 ,1 , . . . , :I.], consisting of ul - k 0s followed by k 1s
Such bit patterns are useful for masking operations. This pattern can be gener-
ated by the C expression (l < < k) -1, exploiting the property that the desired bit
pattern has numeric value 2k - 1. For example, the expression (1<<8) -1 will
generate the bit pattern OxFF.

Floating-point representations approximate real numbers by encoding num-
bers of the form x x 2 Y . The most common floating-point representation was
defined by IEEE Standard 754. It provides for several different precisions, with
the most common being single (32 bits) and double (64 bits). IEEE floating point
also has representations for special values m and not-a-number.

Floating-point arithmetic must be used very carefully because it has only lim-
ited range and precision, and because it does not obey common mathematical
properties such as associativity.

~ ib l io~ra~h i 'c Notes

Reference books on C [40,32] discuss properties of the different data types and
operations. The C standard does not specify details such as precise word sizes or
numeric encodings. Such details are intentionally omitted to make it possible to
implement C on a wide range of different machines. Several books have been
written giving advice to C programmers [41, 501 that warn about problems with
overflow, implicit casting to unsigned, and some of the other pitfalls we have
covered in this chapter. These books also provide helpful advice on variable
naming, coding styles, and code testing. Books on Java (we recommend the one
coauthored by James Gosling, the creator of the language [I]) describe the data
formats and arithmetic operations supported by Java.

Most books on logic design [86, 391 have a section on encodings and arith-
metic operations. Such books describe different ways of implementing arithmetic
circuits. Overton's book on IEEE floating point [56] provides a detailed descrip-
tion of the format as well as the properties from the perspective of a numerical
applications programmer.

Homework Problems
4 = quick problem to try out the idea

44 = 5-15 minutes to completeand may involve writing/runningprograms
444 = sustained problem that may require hours to complete

*44+ = laboratory arsignment that may take one or two weeks to complete

2.38 4
Compile and run the sample code that uses showbytes (file show-bytes. c)
on diierent machines to which you have access. Determine the byte orderings
used by these machines.

100 Chapter 2 Representing and Manipulating Information

2.39 +
Try running the code for showhytes for different sample values.

2.40 +
Write procedures show-short, show-long, and show-double that print the
byte representations of C objects of types short int, long int, and double,
respectively, Try these out on several machines

2.41 ++
Write a procedure is-little-endian that will return 1 when compiled and
run on a little-endian machine, and will return 0 when compiled and run on a
big-endian machine. This program should run on any machine, regardless of its
word size.

2.42 ++
Write a C expression that will yield a word consisting of the least significant byte
of x, and the remaining bytes of y. For operands x = Ox89ABCDEF and y =
0x76543210, this wouldgive Ox765432EF.

2.43 ++
Using only bit-level and logical operations, write C expressions that yield 1 for the
described condition and 0 otherwise. Your code should work on a machine with
any word size. Assume x is an integer.

A. Any bit of x equals 1.

B. Any bit of x equals 0.

C. Any bit in the least significant byte of x equals 1.

D. Any bit in the least significant byte of x equals 0.

2.44 +++
Write a function int-shifts-are-arithmetic () that yields 1 when run on
a machine that uses arithmetic right shifts for int's and 0 otherwise. Your code
should work on a machine with any word size. Test your code on several ma-
chines Write and test a procedure unsigned-shif ts-are-arithmetic ()
that determines the form of shifts used for unsigned int's.

2.45 ++
You are given the task of writing a procedure int-size-is-32 () that yields 1
when run on a machine for which an int is 32 bits, and yields 0 otherwise. Here
is a first attempt:

1 / * The following code does not run properly on some machines * /
2 int bad-int-size-is-320
3 I
4 / * Set most significant bit (msb) of 32-bit machine * I
5 int set-msb = 1 ii 31;

Chapter 2 Homework Problems 101

6 I * Shift past msb of 32-bit word * I
7 int beyond-msb = 1 ii 32;
8

9 I * set-msb is nonzero when word size >= 32
10 beyond-msb is zero when word size i= 32 * I
11 return set-msb && !beyond-msb;
12 1

When compiled and run on a 32-bit SUN SPARC, however, this procedure
returns 0. The following compiler message gives us an indication of the problem:

warning: left shift count >= width of type

A. In what way does our code fail to comply with the C standard?

B. Modify the code to run properly on any machine for which int ' s are at least
32 bits.

C. Modify the code to run properly on any machine for which int ' s are at least
16 bits.

2.46
You just started working for a company that is implementing a set of procedures
to operate on a data structure where four signed bytes are packed into a 32-bit
unsigned. Bytes within the word are numbered from 0 (least significant) to 3
(most significant). You have been assigned the task of implementing a function
for a machine using two's-complement arithmetic and arithmetic right shifts with
the following prototype:

I * Declaration o f data type where 4 bytes are packed
into an unsigned * I

typedef unsigned packed-t;

I* Extract byte from word. Return as signed integer * I
int xbyte(packed-t word, int bytenum);

That is, the function will extract the designated byte and sign extend it to be
a 32-bit i n t .

Your predecessor (who was fired for his incompetence) wrote the following
code:

I * Failed attempt at xbyte * I
int xbyte(packed-t word, int bytenum)
{
return

(word >> (bytenum ii 3)) & OxFF;
I

102 Chapter 2 Representing and Manipulating Information

A. What is wrong with this code?

B. Give a correct implementation of the function that uses only left and right
shifts, along with one subtraction.

2.47 +
Fill in the following table showing the effects of complementing and incrementing
several five-bit vectors in the style of Figure 2.20. Show both the bit vectors and
the numeric values.

2.48 **
Show that first decrementing and then complementing is equivalent to comple-
menting and then incrementing. That is, for any signed value x, the C expressions
-x, "xtl, and " (x-1) yield identical results. What mathematical properties of
two's-complement addition does your derivation rely on?

2.49 +++
Suppose we want to compute the complete 2w-bit representation of x . y, where
both x and y are unsigned, on a machine for which data type unsigned is w bits.
The low-order w bits of the product can be computed with the expression x*y,
so we only require a procedure with prototype

unsigned int unsigned-highqrod(unsigned x, unsigned y);

that computes the high-order w bits of x . y for unsigned variables.
We have access to a library function with prototype:

int signed-highqrod(int x, int y);

that computes the high-order w bits of x . y for the case where x and y are in two's-
complement form. Write code calling this procedure to implement the function
for unsigned arguments. Justify the correctness of your solution.

Hint: Look at the relationship between the signed product x . y and the
unsigned product x' . y' in the derivation of Equation 2.3 6.

2.50 +*
Suppose we are given the task of generating code to multiply integer variable x
by various different constant factors K. To be efficient we want to use only the

Chapter 2 Homework Problems 103

operations t, -, and <<. For the following values of K, write C expressions to
perform the multiplication using at most three operations per expression.

2.51 ++
Write C expressions to generate the bit patterns that follow, where ak represents
k repetitions of symbol a. Assume a w-bit data type. Your code may contain
references to parameters j and k, representing the values of j and k , but not a
parameter representing w .

2.52 ++
Suppose we number the bytes in a w-bit word from 0 (least significant) to w/8 - 1
(most significant). Write code for the following C function, which will return an
unsigned value in which byte i of argument x has been replaced by byte b:

unsigned replace-byte (unsigned x, int i, unsigned char b);

Here are some examples showing how the function should work:

replace-byte(Ox12345678, 2, OxAB) --> Dx12AB5678
replace-byte(Ox12345678, 0, OxAB) --> Ox123456AB

2.53 +++
Fill in code for the following C functions. Function srl performs a logical right
shift using an arithmetic right shift (given by value xsra) , followed by other oper-
ations not including right shifts or division. Function s r a performs an arithmetic
right shift using a logical right shift (given by value x s r l) , followed by other oper-
ations not including right shifts or division. Youmay assume that in t ' s are 32-bits
long. The shift amount k can range from 0 to 31.

unsigned srl(unsigned x, int k)
{

/ * Perform shift arithmetically * /
unsigned xsra = (int) x >> k;

104 Chapter 2 Representing and Manipulating Information

int sra(int x, int k)

I * Perform s h i f t l o g i c a l l y * I
int xsrl = (unsigned) x >> k ;

2.54 +
We are running programs on a machine where values of type in t are 32 bits. They
are represented in two's-complement, and they are right shifted arithmetically.
Values of type unsigned are also 32 bits.

We generate arbitrary values x and y, and convert them to other unsigned as
follows:

I * Create some a r b i t r a r y values * I

int x = random() ;
int y = random () ;
I * Convert t o unsigned ' I
unsigned ux = (unsigned) x ;
unsigned uy = (unsigned) y ;

For each of the following C expressions, you are to indicate whether or not the
expression always yields 1. If it always yields 1, describe the underlying mathe-
matical principles. Otherwise, give an example of arguments that make it yield 0.

B. ((x + y) < < 4) + y-x == 17*y+15*x.

C. -x+-y == - (x+y).
D. (int) (ux-uy) == - (Y-x).

2.55 ++
Consider numbers having a binary representation consisting of an infinite string
of the form 0.y y y y y y . . ., where y is a k-bit sequence. For example, the binary
representation of ; is 0 .01010101~~~ (y = Ol), while the representation of is
0.001100110011~~~ (y = 0011).

A. Let Y = B2Uk(y), that is, the number having binary representation y . Give
a formula in terms of Y and k for the value represented by the infinite string.
Hit: Consider the effect of shifting the binary point k positions to the right.

B. What is the numeric value of the string for the following values of y ?

(a) 001

(b) 1001

(c) 000111

Chapter 2 Homework Problems 105

2.56 +
Fill in the return value for the following procedure that tests whether its first
argument is greater than or equal to its second. Assume the function f 2u returns
an unsigned 32-bit number having the same bit representation as its floating-point
argument. You can assume that neither argument is NaN. The two flavors of
zero: t o and -0 are considered equal.

int float-ge(f1oat x, float y)

(
unsigned ux = f2u(x);
unsigned uy = f2u(y);

I * Get the sign b i t s * /
unsigned sx = ux >> 31;
unsigned sy = uy >> 31;

1' Give an expression using only ux, uy, sx, and sy * /
return I * . . . * / ;

2.57 +
Given a floating-point format with a k-bit exponent and an n-bit fraction, write
formulas for the exponent E, significand M , the fraction f , and the value V for
the quantities that follow. In addition, describe the bit representation.

A. The number 5.0.
B. The largest odd integer that can be represented exactly.

C. The reciprocal of the smallest positive normalized value.

2.58 +
Intel-compatible processors also support an "extended precision" floating-point
format with an 80-bit word divided into a sign bit, k = 15 exponent bits, a single
integer bit, and n = 63 fraction bits. The integer bit is an explicit copy of the
implied bit in the IEEE floating-point representation. That is, it equals 1 for
normalized values and 0 for denormalized values. Fill in the following table giving
the approximate values of some "interesting" numbers in this format:

I Smallest denormalized 1 I

Extended precision

1 Smallest normalized I 1 1

Value

1 Largest normalized I

Decimal

2.59 +
Consider a 16-bit floating-point representation based on the IEEE floating-point
format, with one sign bit, seven exponent bits (k = 7), and eight fraction bits
(n = 8). The exponent bias is z7-' - 1 = 63.

Fill in the table that follows for each of the numbers given, with the following
instructions for each column:

106 Chapter 2 Representing and Manipulating Information

Hex: T%e four hexadecimal digits describing the encoded form.

M : The value of the significand. This should be a number of the form x or t ,
where x is an integer, and y is an integral power of 2. Examples include:

67 1 0, W,and B.

E : The integer value of the exponent.

V : IIhe numeric value represented. Use the notation x or x x 2=, where x
and z are integers.

As an example, to represent the number g, we would have s = 0, M = :, and
E = 1. Our number would therefore have an exponent field of 0x40 (decimal
value 63 + 1 = 64) and a significand field OxCO (binary 1100000@), giving a hex
representation 4OCO.

You need not fill in entries marked "-".

) Number with hex representation 3AAO 1 - 1 I

1 256
I Largest denormalized
I -03

2.60 +
We are running programs on a machine where values of type int have a 32-bit
two's-complement representation. Values.of type float use the 32-bit IEEE
format, and values of type double use the 64-bit IEEE format.

We generate arbitrary integer values x, y, and z, and convert them to other
double as follows:

/ * Create some arbitrary values * /

-

int x = random () ;
int y = random () ;
int z = random (;
/ * Convert to double * /
double dx = (double) x;
double dy = (double) y;
double dz = (double) z;

For each of the following C expressions, you are to indicate whether or not
the expression always yields 1. If it always yields 1, describe the underlying math-
ematical principles Otherwise, give an example of arguments that make it yield
0. Note that you cannot use a IA32 machine running GCC to test your answers,
since it would use the 80-bit extended-precision representation for both float
and double.

-

-

- I

Chapter 2 Homework Problems 107

A. (double) (float) x == dx.

B. dx + dy == (double) (Y+x).

C. dx + dy + dz == dz + dy + dx.

D. dx * dy * dz == dz * dy * dx.

E. dx / dx == dy / dy.

2.61 +
You have been assigned the task of writing a C function to compute a floating-point
representation of 2X. You realize that the best way to do this is to directly construct
the IEEE single-precision representation of the result. When x is too small, your
routine will return 0.0. When x is too large, it will return +a. Fill in the blank
portions of the code that follows to compute the correct result. Assume the
function u2 f returns a floating-point value having an identical bit representation
as its unsigned argument.

float fpwr2(int x)
i

I * Result exponent and significand * I
unsigned exp, sig;
unsigned u;

if (X <) (/ A Too small. Return 0.0 * I

exp = -
sig =

) else if (x i 1 (I * Denormalized result.. * I
exp =
sig =

) else if (x i) (I * Normalized result. * I
exp =
sig =

) else (I * Too big. Return +oo ' 1
exp =
slg =

1

/ * Pack exp and sig into 32 bits * I

u = exp ii 23 1 sig;
I * Return as float * /
return u2f (u) ;

I

2.62 +
Around 250 B.C., the Greek mathematician Archimedes proved that < x <
y . Had he had access to acomputer and the standard library <math. hz, hewould
have been able to determine that the single-precision floating-point approximation
of x has the hexadecimal representation Ox4049OFDB. Of course, all of these are
just approximations, since x is not rational.

108 Chapter 2 Representing and Manipulating Information

A. What is the fractional binary number denoted by this floating-point value?

B. What is the fractional binary representation of 7 ? Hint: See Problem 2.55.

C. At what bit position (relative to the binary point) do these two approximations
to A diverge?

Solution to Practice Problems

Problem 2.1 Solution [Pg. 291
Understanding the relation between hexadecimal and binary formats will be im-
portant once we start looking at machine-level programs. The method for doing
these conversions is in the text, but it takes a little practice for it to become familiar

A. OxEF7A93 to binary:

Hexadecimal 8 F 7 A 9 3

Binary 1M)O 1111 0111 1010 1001 0011

B. Binary 1011011110011100 to hexadecimal:

Binary 1011 0111 1001 1100
Hexadecimal B 7 9 C

C. OxC4E5D to binary:

Hexadecimal C 4 E 5 D

Binary 1100 0100 1110 0101 1101

D. Binary 1101011011011111100110 to hexadecimal:

Binary 11 0101 1011 0111 1110 0110
Hexadecimal 3 5 B 7 E 6

Problem 2.2 Solution [Pg. 301
This problem gives you a chance to think about powers of two and their hexadec-
imal representations.

1 n 2" (Decimal) 2" (Hexadecimal) 1

Chapter 2 Solution to Practice Problems 109

problem 2.3 Solution [Pg. 311
This problem gives you a chance to try out conversions between hexadecimal and
decimal representations for some smaller numbers. For larger ones, it becomes
much more convenient and reliable to use a calculator or conversion program.

Problem 2.4 Solution [Pg. 321
When you begin debugging machine-level programs, you will find many cases
where some simple hexadecimal arithmetic would be useful. You can always
convert numbers to decimal, perform the arithmetic, and convert them back, but
being able to work directly in hexadecimal is more efficient and informative.

Decimal
0

5 5 = 3 . 1 6 + 7

A. 0 x 5 0 2 ~ + 0x8 = 0x5034. Adding 8 to hex c gives 4 with a carry of 1.

B. 0 x 5 0 2 ~ - 0 x 3 0 = Ox4f fc . Subtracting 3 from 2 in the second digit position
requires a borrow from the third. Since this digit is 0, we must also borrow
from the fourth position.

C. 0 x 5 0 2 ~ + 64 = 0 x 5 0 6 ~ . Decimal 64 (26) equals hexadecimal 0x40.

Binary
00000000
0011 0111

D. Ox5lda - 0 x 5 0 2 ~ = Oxae. To subtract hex c (decimal 12) from hex a
(decimal lo), we borrow 16 from the second digit, giving hex e (decimal 14).
In the second digit, we now subtract 2 from hex c (decimal 12), giving hex a
(decimal 10).

Hexadecimal
0 0

37

Problem 2.5 Solution [Pg. 401
This problem testsyour understanding of the byte representation of data and the
two different byte orderings.

A. Little endian: 78 Big endian: 12

B. Little endian: 7 8 5 6 Big endian: 12 34

C. Little endian: 78 56 34 Big endian: 12 3 4 56

Recall that showbytes enumerates a series of bytes starting from the one
with lowest address and working toward the one with highest address. On a
little-endian machine it would list the bytes from least significant to most. On a
big-endian machine, it would list bytes from the most significant byte to the least.

110 Chapter 2 Representing and Manipulating Information

Problem 2.6 Solution [Pg. 401

This problem is another chance to practice hexadecimal to binary conversion. It
also gets you thinking about integer and floating-point representations. We will
explore these representations in more detail later in this chapter.

A. Using the notation of the example in the text, we write the two strings as
follows:

B. With the second word shifted two positions relative to the first, we find a
sequence with 21 matching bits.

C. We find all bits of the integer embedded in the floating-point number, except
for the most significant bit having value 1. Such is the case for the example
in the text as well. In addition, the floating-point number has some nonzero
high-order bits that do not match those of the integer.

Problem 2.7 Solution [Pg. 411
It prints 4 1 4 2 43 44 45 46. Recall also that the library routine s t r l e n
does not count the terminating null character, and so showbytes printed only
through the character 'F.'

Problem 2.8 Solution [Pg. 451
This problem is a drill to help you become more familiar with Boolean operations.

Operation Result

Problem 2.9 Solution [Pg. 451
This problem illustrates how Boolean algebra can be used to describe and reason
about real-world systems. We can see that this color algebra is identical to the
Boolean algebra over bit vectors of length 3.

A. Colors are complemented by complementing the values of R , G , and B.
From this we can see that White is the complement of Black, Yellow is the
complement of Blue, Magenta is the complement of Green, and Cyan is the
complement of Red.

Chapter 2 Solution to Practice Problems 11 1

B. Black is 0, and White is 1.
C. We perform Boolean operations based on a bit-vector representation of the

colors. From this we get the following:

Blue (001) 1 Red (100) = Magenta (101)
Magenta (101) & Cyan (011) = Blue (001)

Green (010) White (111) = Magenta (101)

Problem 2.10 Solution [Pg. 471

This procedure relies on the fact that EXCLUSIVE-OR is commutative and associa-
tive, and that a A a = 0 for any a . We will see in Chapter 5 that the code does not
work correctly when the two pointers x and y are equal (that is, they point to the
same location).

Initially a

Problem 2.1 1 Solution [Pg. 481

Here are the expressions:

b

Step 2
Step3

A. x 1 "OxFF

B. x OxFF

C. x & "OxFF

I

a A b I (a - b) ^ b = (b ^ b) ^ a = a

(a ^ b) ^ a = (a ^ a) ^ b = b 1 a

These expressions are typical of the kind commonly found in performing
low-level bit operations. The expression "OxFF creates a mask where the 8 least-
significant bits equal 0 and the rest equal 1. Observe that such a mask will be
generated regardless of the word size. By contrast, the expression OxFFFFFFOO
would only work on a 32-bit machine.

S t e ~ 1 1 a A b

Problem 2.12 Solution [Pg. 481

These problems help you think about the relation between Boolean operations
and typical masking operations. Here is the code:

b 1

/ * Bit Set * I
int bis(int x, int m)
(
int result = x I m;
return result;

1

I* Bit Clear * /
int bic(int x, int m)
1

int result = x & -m;
return result;

1

112 Chapter 2 Representing and Manipulating Information

It is easy to see that b is is equivalent to Boolean OR-a bit is set in z if either
this bit is set in x or it is set in m.

The bic operation is a bit more subtle. We want to set a bit of z to 0 if the
corresponding bit of m equals 1. If we complement the mask giving "m, then we
want to set a bit of z to 0 if the corresponding bit of the complemented mask
equals 0. We can do this with the AND operation.

Problem 2.13 Solution [Pg. 491

This problem highlights the relation between bit-level Boolean operations and
logic operations in C:

Problem 2.14 Solution [Pg. 501

The expression is ! (x fi y) .
That is xny will be zero if and only if every bit of x matches the corresponding

bit of y. We then exploit the ability of ! to determine whether a word contains
any nonzero bit.

There is no real reason to use this expression rather than simply writing
x == y, but it demonstrates some of the nuances of bit-level and logical op-
erations

Problem 2.15 Solution [Pg. 501
This problem is a drill to help you understand the different shift operations.

Expression
X & Y

x l Y

"x I -y
x & !y

Expression
x && y

x I y
!x 1 (!y
x && -y

Value
0x02
OxF7
OxFD
Ox00

. ,
OxOF [00001111.] [01111000] 0x78 1 [00000011] 0x03 [00000011] 0x03

1

OxCC 1110011001 I 1011000001 0x60 100110011.1 0x33 1 1111100111 OxF3

Value
ox01
0x01
0x00
Ox01

X

Hex Binary
OxFO 11111OOOO1

Problem 2.16 Solution [Pg. 521

In general, working through examples for very small word sizes is a very good way
to understand computer arithmetic.

i
3

x << 3

Binary Hex
~lOOOOOOO1 0x80

x >> 2 1 x > > 2
(Logical) (Arithmetic)

Binary Hex
1001111001 Ox3C

Binary Hex
1111111001 OxFC

Chapter 2 Solution to Practice Problems 11 3

The unsigned values correspond to those in Figure 2.1. For the two's-comple-
ment values, hex digits 0 through 7 have a most significant bit of 0, yielding
nonnegative values, while hex digits 8 through F, have a most significant bit of 1,
yielding a negative value.

Problem 2.17 Solution [Pg. 551

Hexadecimal F- [lolo] 23 + 21 = 10

100001 I 0

For a 32-bit machine, any value consisting of eight hexadecimal digits beginning
with one of the digits 8 through f represents a negative number. It is quite
common to see numbers beginning with a string of f 's, since the leading bits of
a negative number are all 1s. You must look carefully, though. For example, the
number Ox80483b7 has only seven digits. Filling this out with a leading zero
gives Ox080483b7, a positive number.

--'
-2' + 21 = -6

0

sub

push

rnov
rnov

rnov

rnov
add

add

rnov
rnov

rnov

rnov

rnov

$0~184, %esp
%ebx

0x8 (%ebp) , %edx
Oxc (%ebp) , %ebx
OxlO(%ebp),%ecx

Oxfffffe94(%ebp),%eax
%ecx, %ebx

0x10 (%edx) , %eax
%eax,OxfffffeaO(%ebp)
OxfffffflO(%ebp),%eax
%eax, Oxlc (%edx)
%ebx,Oxffffff7c(%ebp)

0x18 (%edx), %eax

Problem 2.18 Solution [Pg. 571

The functions T2U and U2T are very peculiar from a mathematical perspective.
! It is important to understand how they behave.
i ,

A I .
i

i
I ..
I

114 Chapter 2 Representing and Manipulating Information

We solve this problem by reordering the rows in the solution of Practice Prob-
lem 2.16 according to the two's-complement value and then listing the unsigned
value as the result of the function application. We show the hexadecimal values
to make this process more concrete.

Problem 2.19 Solution [Pg. 581
This exercise tests your understanding of Equation 2.4.

For the first four entries, the values of x are negative and T2U4(x) = x f Z 4 .
For the remaining two entries, the values of x are nonnegative and T2U4(x) = x .

Problem 2.20 Solution [Pg. 601
This problem reinforces your understanding of the relation between two's-comple-
ment and unsigned representations, and the effects of the C promotion rules. Re-
call that TMins2 is -2147483648, and when cast to unsigned it becomes
2147483648. In addition, if either operand is unsigned, then the other operand
will be cast to unsigned before comparing.

1 Exoression 1 Tvoe I Evaluation 1 . .
-2147483647-1 == 2147483648U I unsigned I 1

-2147483647-1 < -2147483647 I siened I 1

! (unsiuned) (-2147483647-1) < 2147483647 1 unsigned I 0 1

(unsigned) (-2147483647-1) < -2147483647

-2147483647-1 < 2147483647

Problem 2.21 Solution [Pg. 631
The expressions in these functions are common program "idioms" for extracting
values from a word in which multiple bit fields have been packed. They exploit the
zero-filling and sign-extending properties of the different shift operations. Note
carefully the ordering of the cast and shift operations. In funl , the shifts are
performed on unsigned word and hence are logical. In f un2, shifts are performed
after casting word to int and hence are arithmetic.

,,

unsigned
signed

1

1

Chapter 2 Solution to Practice Problems 115

B. Function fun1 extracts a value from the low-order 8 bits of the argument,
giving an integer ranging between 0 and 255. Function fun2 also extracts
a value from the low-order 8 bits of the argument, but it also performs sign
extension. The result will be a number between -128 and 127.

Problem 2.22 Solution [Pg. 641
The effect of truncation is fairly intuitive for unsigned numbers, but not for two's-
complement numbers. This exercise lets you explore its properties using very
small word sizes.

As Equation 2.7 states, the effect of this truncation on unsigned values is to
simply to find their residue, modulo 8. The effect of the truncation on signed
values is a bit more complex. According to Equation 2.8, we first compute the
modulo 8 residue of the argument. This will give values 0 to 7 for arguments 0
to 7, and also for arguments -8 to -1. Then we apply function U 2 T 3 to these
residues, giving two repetitions of the sequences 0 to 3, and -4 to -1.

Problem 2.23 Solution [Pg. 651
This problem was designed to demonstrate how easily bugs can arise due to the
implicit casting from signed to unsigned. It seems quite natural to pass parameter
length as an unsigned, since one would never want to use a negative length. The
stopping criterion i <= length-1 also seems quite natural. But combining
these two yields an unexpected outcome!

1 Since parameter length is unsigned, the computation 0 - 1 is performed
1 using unsigned arithmetic, which is equivalent to lnodular addition. The result is
I then U M U X ~ ~ (assuming a 32-bit machine). The 5 comparison is also performed

-
Hex

t
;
I

using an unsigned comparison, and since any 32-bit number is less than or equal to
I U M U X ~ ~ , the comparison always holds! Thus, the code attempts to access invalid

Unsigned
Original I Truncated

010
3 I 3

Original
0

3

I elements of array a.
!
1 The code can be fixed by either declaring 1 ength to be an int , or by changing
I
I

the test of the for loop to be i < length.

Truncated
0 --
3

I
I

I Problem 2.24 Solution [Pg. 691

j This problem is a simple demonstration of arithmetic modulo 16. The easiest way

i
to solve it is to convert the hex pattern into its unsigned decimalvalue. Fornonzero
values of x , we must have (-; x) + x = 16. Then we convert the complemented
value back to hex.

Two's-complement
Original

0
3

Truncated
0
3

116 Chapter 2 Representing and Manipulating Information

Problem 2.25 Solution [Pg. 711

This problem is an exercise to make sure you understand two's-complement ad-
dition.

x v x + v x + : v I Case 1

X

Problem 2.26 Solution [Pg. 731

This problem helps you understand two's-complement negation using a very small
word size.

For w = 4, we have TMin4 = -8. So -8 is its own additive inverse, while
other values are negated by integer negation.

Hex
-; x

Decimal I Hex Decimal
0

The bit patterns are the same as for unsigned negation.

0

I 7

Problem 2.27 Solution [Pg. 761
This problem is an exercise to make sure you understand two's-complement mul-
tiplication.

0 0

Hex Decimal Hex Decimal
0 I 0 0 0

Chapter 2 Solution to Practice Problems 11 7

Mode

Two's-Comp. -2 [I101 2 [OlO] -4 [111100] -4 [loo]

Problem 2.28 Solution [Pg. 771

Unsigned 1 6 [I101 2 [OlO] 12 [OOllOO] 4 [loo]
x

Unsigned
Two's-Comp.

In Chapter 3, we will see many examples of the l ea l instruction in action. The

1 [Wl] 7 [Ill] 7 [OOOlll] 7 [ill]

instruction is provided to support arithmetic, but the C compiler often
uses it as a way to perform multiplication by small constants.

For each value of k , we can compute two multiples: 2k (when b is 0) and 2k $1
(when b is a). Thus, we can compute multiples 1,2,3,4,5,8, and 9.

Y

1 [oo~]

Problem 2.29 Solution [Pg. 791

x.Y 1 Truncated x . y

Unsigned
Two's-Comp.

We have found that people have difficulty with this exercise when working di-
rectly with assembly code. It becomes more clear when put in the form shown in

- -

-1 [Ill]

o p t a r i t h .
We can see that M is 15; X*M is computed as (x<<4) -x.
We can see that N is 4; a bias value of 3 is added when y is negative, and the

right shift is by 2.

7 [Ill]
-1 [Ill]

Problem 2.30 Solution [Pg. 791
These "C puzzle" problems provide a clear demonstration that programmers must
understand the properties of computer arithmetic:

-1 [111111]

A. (X >= 0) 1 1 ((2 *x) < 0) .
False. Let x be -2147483648 (TMin32). We will then have 2 *x equal to 0.

B. (X & 7) != 7 1 1 (~ ~ 3 0 < 0) .
True. If (x & 7) ! = 7 evaluates to 0, then we must have bit x2 equal to 1.
When shifted left by 30, this will become the sign bit.

7 [Ill]
-1 [Ill]

- -

-1 [Ill]

C. (x * x) >= 0.
False. When x is 65535 (OXFFFF), x*x is -131071 (0 ~ ~ ~ ~ ~ 0 0 0 1) .

D. x < 0 1 (-x <= 0.
True. If x is nonnegative, then -x is nonpositive.

E. x > 0 1 1 -x >= 0.
False. Let x be -2147483648 (TMin32). Then both x and -x are negative.

49 [110001]
1 [OOCOOl]

F. x*y == ux*uy.
True. Two's-complement and unsigned multiplication have the same bit-level
behavior.

G. "x*y + uy*ux == -y.
True. "x equals -x-1. uy*ux equals x*y. Thus, the left hand side is equiv-
alent to -x*y-y+x*y.

1 [OOl]
1 [OOl]

118 Chapter 2 Representing and Manipulating Information

Problem 2.31 Solution [Pg. 821

Understanding fractional binary representations is an important step to under-
standing floating-point encodings. This exercise lets you try out some simple
examples.

One simple way to think about fractional binary representationsis torepresent
a number as a fraction of the form $. We can write this in binary using the binary
representation of x, with the binary point inserted k positions fIom the right.
As an example, for 3 , we have 2310 = 101112. We then put the binary point 4
positions from the right to get 1.01112.

Fractional value

Problem 2.32 Solution [Pg. 821

Binary representation I Decimal representation

In most cases, the limited precision of floating-point numbers is not a major prob-
lem, because the relative error of the computation is still fairly low. In this example,
however, the system was sensitive to the absolute error.

A. We can see that x - 0.1 has binary representation:

1
4

Comparing this to the binary representation of 6 , we can see that it is simply
2-" x $, which is around 9.54 x lo-'.

0.01 1 0.25

Problem 2.33 Solution [Pg. 871

Working through floating point representations for very small word sues helps
clarify how IEEE floating point works. Note especially the transition between
denormalued and normalized values.

Chapter 2 Solution to Practice Problems 119

1 Bits e ~ l f M I V

Problem 2.34 Solution [Pg. 891
Hexadecimal 0x3 543 2 1 is equivalent to binary [llOlOlOlOOOOllOOl0000~]. Shift-
ing thisright21 placesgives 1.101010100001100100001~x221. We form the fraction
field by dropping the leading 1 and adding2Os, giving [101010100~110010000100].
?he exponent is formed by adding bias 127 to 21, giving 148 (binary [10010100]).
We combine this with a sign field of 0 to give a binary representation

!

I
i

i
1
!

i

i
!

!
!

i
! 1 0 11 10 - - - NaN 1

We see that the correlation between the two representations correspond to the
low-order bits of the integer, up to the most significant bit equal to 1 matching the
high-order 21 bits of the fraction:

I
!

Problem 2.35 Solution [Pg. 891
This exercise helps you think about what numbers cannot be represented exactly
in floating point.

0 11 11 NaN - - -

1 120 Chapter 2 Representing and Manipulating Information

The number has binary representation 1 followed by n 0's followed by 1,
giving value 2"' +- 1.

When n = 23, the value is 224 f 1 = 16,777,217.

Problem 2.36 Solution [Pg. 931
In general it is better to use a library macro rather than inventing your own code.
This code seems to work on a variety of machines, however.

We assume that the value le400 overllows to infinity.

1 #define POS-INFINITY le400
2 #define NEG-INFINITY (-POS-INFINITY)
3 #define NEG-ZERO (-1.OiPOS-INFINITY)

coddda1dieee.c

Problem 2.37 Solution [Pg. 971
Exercises such as this one help you develop your ability to reason about floating
point operations from a programmer's perspective. Make sure you understand
each of the answers.

A. x == (int) (float) x
No. For example, when x is TMax.

B. x == (int) (double) x
Yeg since double has greater precision and range than int.

C. f == (float) (double) f
Yes, since double has greater precision and range than float.

D. d == (float) d
No. For example, when d is le40, we will get fa on the right.

E. f == -(-f)
Yes, since a floating-point number is negated by simply inverting its sign bit.

E 213 == 2i3.0
No, the lefthand value will be the integer value 0, while the righthand value
will be the floating-point approximation of i.

G. (d .= 0.0) 1 1 ((d *2) < 0.0)
Yes, since multiplication is monotonic.

H. (d+f)-d == f
No, for example when d is f ca and f is 1, the lefthand side will be NaN,
while the righthand side will be 1.

