
A Tour of Computer Systems

Information is Bits + Context 2

Programs Are Translated by Other Programs into Different Forms 4

It Pays to Understand How Compilation Systems Work 6

Processors Read and Interpret Instructions Stored in Memory 6

Caches Matter 10

Storage Devices Form a Hierarchy 12

The Operating System Manages the Hardware 13

Systems Communicate W~th Other Systems Using Network, 18

The Next Step 20

Summary 20

2 Chapter 1 A Tour of Computer Systems

A computer system consists of hardware and systems software that work together
to run application programs. Specific implementations of systems change over
time, but the underlying concepts do not. All computer systems have similar
hardware and software components that perform similar functions. This book is
written for programmers who want to get better at their craft by understanding
how these components work and how they affect the correctness and performance
of their programs.

You are poised for an exciting journey. If you dedicate yourself to learning the
conceptsin this book, then you will be on your way to becoming a rare "power pro-
grammer," enlightened by an understanding of the underlying computer system
and its impact on your application programs.

You are going to learn practical skills such as how to avoid strange numerical
errors caused by the way that computers represent numbers. You will learn how
to optimize your C code by using clever tricks that exploit the designs of modern
processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from
buffer overflow bugs that plague network and Internet software. You will learn
how to recognize and avoid the nasty errors during linking that confound the
average programmer. You will learn how to write your own Unix shell, your own
dynamic storage allocation package, and even your own Web server!

In their classic text on the C programming language [40], Kernighan and
Kitchie introduce readers to C using the hello program shown in Figure 1.1.
Although hello is a very simple program, every major part of the system must
work in concert in order for it to run to completion. In a sense, the goal of this
book is to help you understand what happens and why, when you run hello on
your system.

We begin our study of systems by tracing the lifetime of the hello program,
from the time it is created by a programmer, until it runs on a system, prints its
simple message, and terminates. As we follow the lifetime of the program, we will
briefly introduce the key concepts, terminology, and components that come into
play. Later chapters will expand on these ideas.

1.1 Information i s Bits + Context

Our hello program begins life as a source program (or source file) that the
programlncr creates with an editor and saves in a text file called hello. c. The

- coddintro/hello.c
1 #include <stdio.h>
2
3 int main0
4 (
5 printf (''hello, world\nU) ;
6 1

code/inbo/hello. c

Figure 1.1 The hello program.

Section 1.1 Information is Bits + Context 3

< s t d i o
60 115 116 100 105 111 46
a i n () \n (
9 7 105 110 40 41 10 123

t f (" h e 1
116 102 40 34 104 101 108

\ n 1 \n 1
92 110 34 41 59 10 125

Figure 1.2 The ASCII text representation of hsllo.~

source program is a sequence of bits, each with a value of 0 or 1, organized in 8-bit
chunks called bytes. Each byte represents some text character in the program.

Most modem systems represent text characters using the ASCII standard that
represents each character wth a unique byte-sized integer value. For example,
Figure 1.2 shows the ASCII representation of the hello. c program.

The hello. c program is stored in a file as a sequence of bytes. Each byte
has an integer value that corresponds to some character. For example, the first
byte has the integer value 35, which corresponds to the character '#'. The second
byte has the integer value 105, which corresponds to the character 'i', and so on.
Notice that each text line is terminated by the invisible newline character '\>n',
which is represented by the integer value 10. Files such as hello. c that consist
exclusively of ASCII characters are known as textfiles. All other files are known
as binary files.

The representation of hello. c illustrates a fundamental idea: All informa-
tion in a system-including disk files, programs stored inmemory, user data stored
in memory, and data transferred across a network-is represented as a bunch of
bits. The only thing that distinguishes different data objects is the context in which
we view them. For example, in different contexts, the same sequence of bytes
might represent an integer, floating-point number, character string, or machine
instruction.

As programmers, we need to understand machine representations of numbers
because they are not the same as integers and real numbers. They are finite
approximations that can behave in unexpected ways. This fundamental idea is
explored in detail in Chapter 2.

programming language.

9 to 1973 by Dennis Ritchie of Bell Laboratories. The American National
ratified the ANSl C standard in 1989. The standard defines the C language and

braryfunctions known as the Cstandard library. Kernighan and Ritchie describe ANSl C in their
classic book, which is known affectionately as "KbV [40]. In Ritchie's words [64], C is "quirky, flawed,
and an enormous success." So why the success?

with the Unix operating system, C was developed from the beginning as the
uage for Unix. Most of the Unix kernel, and all of its supporting tools

in C. As Unix became popular in universities in the late 1970s and

4 Chapter 1 A Tour of Computer Systems

early 1980s, many people were exposed to C and found that they liked it. Since Unix was written
almost entirely in C, it could be easily ported to new machines, which created an even wider audience
for both C and Unix.
Cisasmall, simple language. The design was controlled by a single person, rather than a committee,
and the result was a clean, consistent des~gn with little baggage. The K&R book describes the
complete language and standard library, with numerous examples and exercises, in only 261 pages.
The simplicity of C made it relatively easy to learn and to port to different computers.
C was designed for apracticalpurpose. C was designed to implement the Unix operating system.
Later, other people found that they could write the programs they wanted, without the language
getting in the way.

Cis the language of choice for system-level programming, and there is a huge installed base of application-
level programs as well. However, it is not perfect for all programmers and all situations. C pointers are a
common source of confusion and programming errors. C also lacks explicit support for useful abstractions
such as classes, objects, and exceptions. Newer languages such as C t t and Java address these issues for
application-level programs.

1.2 Programs Are Translated by Other Programs into Different
Forms

The he l lo program begins life as a high-level C program because it can be read
and understood by human beings in that form. However, in order to run he1 l o . c
on the system, the individual C statements must be translated by other programs
into a sequence of low-level machine-language instructions. These instructions
are then packaged in a form called an executable object program and stored as a
binary disk file. Object programs are also referred to as executable objectfiles.

On a Unix system, the translation from source file to object file is performed
by a compiler driver:

mix> gcc -o h e l l o he1lo.c

Here, the GCC compiler driver reads the source file he l lo . c and translates it into
an executable object file hello. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler, and linker) are known collectively as the com-
pilation system.

Preprocessirrgphase. The preprocessor (cpp) modifies the original C pro-
gram according to directives that begin with the # character. For example,
the #include <s td io . h> command in line 1 of h e l l o . c tells the pre-
processor to read the contents of the system header Ele s t d i o . h and insert
it directly into the program text. The result is another C program, typically
with the . i suffix.

Section 1.2 Programs Are Translated by Other Programs into Different Forms 5

he1lo.c

Source
program

(text) progmm program program
(text) (binary) (bina~)

Figure 1.3 The compilation system.

r Compilationphase. Thecompiler (ccl) translates the textfile hello. i into
the text f i e hello. s, whichcontains an assembly-languageprogram. Each
statement in an assembly-language program exactly describes one low-level
machine-language instruction in a standard text form. Assembly language is
useful because it provides a common output language for different compilers
for different high-level languages. For example, C compilers and Fortran
compilers both generate output files in the same assembly language.

r Assemblyphase. Next, theassembler (as) translates hello. s intomachine-
language instructions, packages them in a form known as a relocatable object
program, and stores the result in the object file hello. o. The hello. o
file is a binary file whose bytes encode machine language instructions rather
than characters. If we were to view hello, o with a text editor, it would
appear to be gibberish.

r Linking phase Notice that our hello program calls the printf func-
tion, which is part of the standard C library provided by every C compiler.
The printf function resides in a separate precompiled object file called
printf . o, which must somehow be merged with our hello. o program.
The linker (Id) handles this merging. The result is the hello fle, which
is an executable objectfile (or simply executable) that is ready to be loaded
into memory and executed by the system.

6 Chapter 1 ATour of Computer Systems

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as h e l l o . c, we can rely on the compilation system to
produce correct and efficient machine code. However, there are some important
reasons why programmers need to understand how compilation systems work:

r Optimizing program performance. Modern compilers are sophisticated
tools that usually produce good code. As programmers, we do not need
to know the inner workings of the compiler in order to write efficient code.
However, in order to make good coding decisions in our C programs, we
do need a basic understanding of assembly language and how the compiler
translates different C statements into assembly language. For example, is
a switch statement always more efficient than a sequence of i f -then-
e l s e statements? Just how expensive is a function call? Is a while loop
more efficient than a do loop? Are pointer references more efficient than
array indexes? Why does our loop run so much faster if we sum into a local
variable instead of an argument that is passed by reference? Why do two
functionally equivalent loops have such different running times?

In Chapter 3, we will introduce the Intel IA32 machine language and
describe how compilers translate different C constructs into that language.
In Chapter 5 you will learn how to tune the performance of your C programs
by making simple transformations to the C code that help the compiler do
its job. And in Chapter 6 you will learn about the hierarchical nature of
the memory system, how C compilers store data arrays in memory, and how
your C programs can exploit this knowledge to run more efficiently.

r understanding link-time errors. In our experience, some of the most perplex-
ing programming errors are related to the operation of the linker, especially
when you are trying to build large software systems. For example, what does
it mean when the linker reports that it cannot resolve a reference? What is
the difference between a static variable and a global variable? What happens
if you define two global variables in different C files with the same name?
What is the difference between a static library and a dynamic library? Why
does it matter what order we list libraries on the command line? And scari-
est of all, why do some linker-related errors not appear until run time? You
will learn the answers to these kinds of questions in Chapter 7.
Avoiding security holes. For many years now, buffer overfiow bugs have
accounted for the majority of security holesin network and Internet servers.
These bugs exist because too many programmers are ignorant of the stack
discipline that compilers use to generate code for functions. We will describe
the stack discipline and buffer overflow bugs in Chapter 3 as part of our study
of assembly language.

1.4 Processors Read and Interpret Instructions Stored in
Memory

At this point, our he1 1 o . c source program has been translated by the compilation
system into an executable object file called h e l l o that is stored on disk. To run

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 7

the executable on a Unix system, we type its name to an application program
known as a shell:

unix> . /hel lo
hel lo, world
unix>

Theshell is a command-line interpreter that prints a prompt, waits for you to type a
command line, and then performs the command. If the first word of the command
line does not correspond to a built-in shell command, then the shell assumes that
it is the name of an executable file that it should load and run. So in this case, the
shell loads and runs the hello program and then waits for it to terminate. The
hello program prints its message to the screen and then terminates. The shell
then prints a prompt and waits for the next input command line.

1.4.1 Hardware Organization of a System

To understand what happens to our hello program when we run it, we need
to understand the hardware organization of a typical system, which is shown in
Figure 1.4. This particular picture is modeled after the family of Intel Pentium
systems, but all systems have a similar look and feel. Don't worry about the
complexity of this figure just now-we will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-sized chunks of bytes known as words. The
number of bytes in a word (the word size) is a fundamental system parameter that

Fiaure 1.4 CPI I
J

Hardware organization
of a typical system.
CPU: Central
Processing Unit, ALU:
ArithmeticILogic Unit, PC: m bus Memory bus
Program Counter, USB:
Universal Serial Bus.

I I
Mouse Keyboard Display h e l l o executable

Disk stored on disk 6

8 Chapter 1 A Tour of Computer Systems

varies across systems. For example, Intel Pentium systems have a word size of 4
bytcs, while server-class systems such as Intel Itaniums and high-end Sun SPARCS
have word sizes of 8 bytes. Smaller systems that are used as embedded controllers
in automobiles and factories can have word sizes of 1 or 2 bytes. For simplicity,
we will assume a word size of 4 bytes, and we will assume that buses transfer only
one word at a time.

I10 Devices

Inputloutput (110) devices are the system's connection to the external world.
o u r example system has four TI0 devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program rcsides on the disk.

~achl10 device is connected to the I10 bus by either a controller or anadapter.
The distinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system's main printed circuit board (often called
the motherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I10 bus and an UO device.

Chapter 6 has more to say about how I10 devices such as disks work. And
in Chapter 11, you will learn how to use the Unix I10 interface to access devices
from your application programs. We focus on the especially interesting class of
devices known as networks, but the techniques generalize to other kinds of devices
as well.

Main Memory

The main memory is a temporary storage device that holds both aprogram and the
data it manipulates while the processor is executing the program. Physically, main
memory consists of a collection of Dynamic Random Access Memory (DRAM)
chips. Logically, memory is organized as a linear array of bytes, each with its own
unique address (array index) starting at zero. In general, each of the machine
instructions that constitute a program can consist of a variable number of bytes.
The sizes of data items that correspond to C program variables vary according
to type. For example, on an Intel machine running Linux, data of type short
requires two bytes, types int, float, and long four bytes, and type double
eight bytes

Chapter 6 has more to say about how memory technologies such as DRAM
chips work, and how they are combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that inter-
prets (or executes) instructions stored in main memory. At its core is a word-sized
storage device (or register) called theprogram counter (PC). At any point in time,

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 9

the PC points at (contains the address of) some machine-language instruction in
main memory.

From the time that power is applied to the system, until the time that the
power is shut o f t the processor blindly and repeatedly performs the same basic
task, over and over again: It reads the instruction from memory pointed at by the
program counter (PC), interprets the bits in the instruction, performs some simple
operation dictated by the instruction, and then updates the PC to point to the next
instruction, which may or may not be contiguous in memory to the instruction
that was just executed.

There are only a few of these simple operations, and they revolve around main
memory, the registerfile, and the arithmetidlogic unit (ALU). The register file is a
small storage device that consists of a collection of word-sized registers, each with
its own unique name. The ALU computes new data and address values. Here
are some examples of the simple operations that the CPU might carry out at the
request of an instruction:

Load: Copy a byte or a word from main memory into a register, overwriting
the previous contents of the register.
Store: Copy a byte or a word from a register to a location in main memory,
overwriting the previous contents of that location.
Update: Copy the contents of two registers to the ALU, which adds the two
words together and stores the result in a register, overwriting the previous
contents of that register.
I/O Read: Copy a byte or a word from an 110 device into a register.
IIO Write: Copy a byte or a word from a rcgistcr to an 110 device.
Jump: Extract a word from the instruction itself and copy that word into the
program counter (PC), overwriting the previous value of the PC.

Chapter 4 has much more to say about how processors work.

1.4.2 Running the hello Program

Given this simple view of a system's hardware organization and operation, we can
begin to understand what happens when we run our example program. We must
omit a lot of details here that will be filled in later, but for now we will be content
with the big picture.

Initially, the shell program is executing its instructions, waiting for us to type
a command. As we type the characters ". /he l low at the keyboard, the shell
program reads each one into a register, and then stores it in memory, as shown in
Figure 1.5.

When we hit the en te r key on the keyboard, the shell knows that we have
finished typing the command. The shell then loads the executable h e l l o file by

PC is also a commonly used acronym for "personal computer? However, the distinction between
the two should be clear from the context.

10 Chapter 1 ATour of Computer Systems

Figure 1.5
Reading the hello
command from the
keyboard.

CPU

Register flle r, (

lm!hv 1 "hello'

m@d

ts for

rG] FP=l other as network devices adapters such
controller ada~ter controller

System bus Memory bus

I I +
Mouse Keyboard Display

User
types

"hello"

executing a sequence of instructions that copies the code and data in the he l lo
object file from disk to main memory. The data include the string of characters
"he l lo , world\$nn that will eventually be printed out.

Using a technique known as direct memory access (D M A , discussed in Chap-
ter 6) , the data travels directly fromdisk to mainmemor): without passing through
the processor. This step is shown in Figure 1.6.

Fiaure 1.6 PDI I a

Loading the executable
from disk into main
memory.

1 ' Isystem bus Memory bus

- ---
Expans~on slots for
other dev~ces such
as network adapters

adapter

I I
Mouse Keyboard Display

he110 executable
stored on disk

Section 1 .S Caches Matter 11
Figure 1.7
Writing the output
string from memory to
the display.

CPU

I Register file - I

"hello, worldn"

hello code

Expansion slots for
other devices such
as network adapters

hel lo executable
"hello, worldln" h Disk stored on disk

Once the code and data in the hello object fie are loaded into memory, the
processor begins executing the machine-language instructions in the hello pro-
gram'smainroutine. These instructioncopy the bytesin the "hello, world\nn
string from memory to the register file, and from there to the display device, where
they are displayed on the screen. This step is shown in Figure 1.7.

1.5 Caches Matter

An important lesson from this simple example is that a system spends a lot of
time moving information from one place to another. The machine instructions in
the hello program are originally stored on disk. When the program is loaded,
they are copied to main memory. As the processor runs the program, instruc-
tions are copied from main memory into the processor. Similarly, the data string
"hello, world\n," originally on disk, is copied to main memory, and then
copied from main memory to the display device. From a programmer's perspec-
tive, much of this copying is overhead that slows down the "real work" of the
program. Thus, a major goal for system designers is make these copy operations
run as fast as possible.

Because of physical laws, larger storage devices are slower than smaller stor-
age devices. And faster devices are more expensive to build than their slower
counterparts. For example, the disk drive on a typical system might be 100 times
larger than the main memory, but it might take the processor 10,000,000 times
longer to read a word from disk than from memory.

12 Chapter 1 ATour of Computer Systems

CPU chin

Figure 1.8 Cache memories.

Similarly, a typical register file stores only a few hundred bytes of information,
as opposed to millions ofbytes in the main memory. However, the processor can
read data from the register file almost 100 times faster than from memory. Even
more troublesome, as semiconductor technology progresses over the years, this
processor-memory gap continues to increase. It is easier and cheaper to make
processors run faster than it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller
faster storage devices called cache memories (or simply caches) that serve as tem-
porary staging areas for information that the processor is likely to need in the
near future. Figure 1.8 shows the cache memories in a typical system. An L1
cache on the processor chip holds tens of thousands of bytes and can be accessed
nearly as fast as the register file. A larger L2 cache with hundreds of thousands
to millions of bytes is connected to the processor by a special bus. It might take 5
times longer for the process to access the L2 cache than the L1 cache, but this is
still 5 to 10 times faster than accessing the main memory. The L1 and L2 caches
are implemented with a hardware technology known as Static Random Access
Memory (SRAM).

One of the most important lessons in this book is that application program-
mers who are aware of cache memories can exploit them to improve the perfor-
mance of their programs by an order of magnitude. You will learn more about
these important devices and how to exploit them in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage device (e.g., cache memory) be-
tween the processor and a larger slower device (e.g., main memory) turns out
to be a general idea. In fact, the storage devices in every computer system are
organized as a memory hierarchy similar to Figure 1.9. As we move from the top
of the hierarchy to the bottom, the devices become slower, larger, and less costly
per byte. The register file occupies the top level in the hierarchy, which is known
as level 0 or LO. The L1 cache occupies level 1 (hence the term Ll). The L2 cache
occupies level 2. Main memory occupies level 3, and so on.

Section 1.7 The Operating System Manages the Hardware 13
Figure 1.9
An example
of a memory
hierarchy.

I
Smaller,
faster,
and

costlier

L1 cache holds cache lines retrieved
from the L2 cache.

L2 cache holds cache lines
retrieved from memory.

Main memory holds disk
blocks retrieved from local

Local secondary storage

Local disks hold files
retrieved from disks on
remote network server.

Remote secondary storage
(distributed file systems, Web servers)

The main idea of a memory hierarchy is that storage at one level serves as a
cache for storage at the next lower level. Thus, the register file is a cache for the
L1 cache, which is a cache for the L2 cache, which is a cache for the main memory,
which is a cache for the disk. On some networked systems with distributed file
systems, the local disk serves as a cache for data stored on the disks of other
systems.

Just as programmerscan exploit knowledge of the L1 and L2caches to improve
performance, programmers can exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much more to say about this.

1.7 The Operating System Manages the Hardware

Back to our he1 lo example. When the shell loaded and ran the hello program,
and when the hello program printed its message, neither program accessed the
keyboard, display, disk, or main memory directly. Rather, they relied on the
servicesprovided by the operatingsystem. We can think of the operating system as
a layer of software interpdsed between the application program and the hardware,
as shown in Figure 1.10.. All attempts by an application program to manipulate
the hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications, and (2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The operating system achieves both goals via the
fundamental abstractions shown in Figure 1.11: processes, virtual memory, and
files. As this figure suggests, files are abstractions for 110 devices, virtual memory

14 Chapter 1 ATour of Computer Systems

Figure 1.10
Layered view of a Software
computer system.

Figure 1.11 Processes
Abstractions I)

provided by an t I

operating system. I I
Virtual memory I -

I Files I
I I

I -
I ~rocessor I Main memory I IK) devices I

i s an abstraction for both the main memory and disk I10 devices, and processes
are abstractions for the processor, main memory, and I10 devices. We discuss
each in turn.

Aside: Unix and Posix.

The 1960s was an era of huge, complex operating systems, such as IBM's 051360 and Honeywell's Multics
systems. While 051360 was one of the most successful software projects in history, Multics dragged on for
years and never achieved wide-scale use. Bell Laboratories was an original partner in the Multics project,
but dropped out in 1969 because of concern over the complexity of the project and the lack of progress.
In reaction to their unpleasant Multics experience, a group of Bell Labs researchers - Ken Thompson,
Dennis Ritchie, Doug Mcllroy, and Joe Ossanna - began work in 1969 on a simpler operating system for
a DEC PDP-7 computer, written entirely in machine language. Many of the ideas in the new system, such
as the hierarchical file system and the notion of a shell as a user-level process, were borrowed from Multics
but implemented in a smaller, simpler package. In 1970, Brian Kernighan dubbed the new system "Unix"
as a pun on the complexity of "Multics." The kernel was rewritten in C in 1973, and Unix was announced
to the outside world in 1974 [65].

Because Bell Labs made the source code available to schools with generous terms, Unix developed
a large following at universities. The most influential work was done at the University of California a t
Berkeley in the late 1970s and early 1980s, with Berkeley researchers adding virtual memory and the
Internet protocols in a series of releases called Unix 4.xBSD (Berkeley Software Distribution). Concurrently,
Bell Labs was releasing their own versions, which become known as System V Unix. Versions from other
vendors, such as the Sun Microsystems Solaris system, were derived from these original BSD and System
V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new and
often incompatible features. To combat this trend, IEEE (Institute for Electrical and Electronics Engineers)
sponsored an effort to standardize Unix, later dubbed "Posix" by Richard Stallman. The result was a family
of standards, known as the Posix standards, that cover such issues as the C language interface for Unix
system calls, shell programs and utilities, threads, and network programming. As more systems comply
more fully with the Posix standards, the differences between Unix versions are gradually disappearing.

Section 1.7 The Operating System Manages the Hardware IS

1.7.1 Processes

When a program such as hello runs on a modern system, the operating system
provides the illusion that the program is the only one running on the system. The
program appears to have exclusive use of both the processor, main memory, and
I/O devices. The processor appears to execute the instructions in the program, one
afterthe other, without interruption. And thecode and dataof the program appear
to be the only objects iri the system's memory. Theseillusions are provided by the
notion of a process, one of the most important and successful ideas in computer
science.

Aprocess is the operating system's abstraction for a running program. Multi-
ple processes can run concurrently on the same system, and each process appears
to have exclusive use of the hardware. By concurrently, we mean that the instruc-
tions of one process are interleaved with the instructions of another process. The
operating system performs this interleaving with a mechanism known as context
switching.

The operating system keeps track of all the state information that the process
needs in order to run. This state, which is known as the context, includes infor-
mation such as the current values of the PC, the register file, and the contents of
main memory. At any point in time, exactly one process is running on the system.
When the operating system decides to transfer control from the current process
to a some new process, it performs a context switch by saving the context of the
current process, restoring the context of the new process, and then passing control
to the new process. The new process picks up exactly where it left off. Figure 1.12
shows the basic idea for our example hello scenario.

There are two concurrent processes in our example scenario: the shell process
and the hello process. ~nitially, the shell process is running alone, waiting for
input on the command line. When we ask it to run the hello program, the shell
carries out our request by invoking a special function known as a system caN that
passes control to the operating system. The operating system saves the shell's
context, creates a new hello process and its context, and then passes control to
the new hello process. After hello terminates, the operating system restores
the context of the shell process and passes control back to it, where it waits for
the next command line input.

I
shell hello

Time process I process
---d

I 4 ! Application code

OS code Context
----.---) switch

A~~lication code

1 Application code /--"

Figure 1.12 Process context switching.

16 Chapter 1 A Tour of Computer Systems

Implementing the process abstraction requires close cooperation between
both the low-level hardware and the operating system software. We will explore
how this works, and how applications can create and control their own processes,
in Chapter 8.

One of the implications of the process abstraction is that by interleaving dif-
ferent processes, it distorts the notion of time, making it difficult for programmers
to obtain accurate and repeatable measurements of running time. Chapter 9 dis-
cusses the various notions of time in a modern system and describes techniques
for obtaining accurate measurements.

1.7.2 Threads

Although we normally think of a processas havinga single control flow, in modern
systems a process can actually consist of multiple execution units, called threads,
each running in the context of the process and sharing the same code and global
data. Threads are an increasingly important programming model because of the
requirement for concurrency in network servers, because it is easier to share data
between multiple threads than between multiple processes, and because threads
are typically more efficient than processes. You will learn the basic concepts of
concurrency, including threading, in Chapter 13.

1.7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the illusion that
it has exclusive use of the main memory. Each process has the same uniform view
of memory, which is known as its virtual address space. The virtual address space
for Linux processes is shown in Figure 1.13. (Other Unix systems use a similar
layout.) InLinux, the topmost one-fourth of the address space is reserved for code
and data in the operating system that is common to allprocesses. The bottommost
three-quarters of the address space holds the code and data defined by the user's
process. Note that addresses in the figure increase from bottom to the top.

The virtual address space seen by each process consists of a number of well-
defined areas, each with a specific purpose. You will learn more about these areas
later in the book, but it will be helpful to look briefly at each, starting with the
lowest addresses and working our way up:

Program code and data. Code begins at the same fixed address, followed
by data locations that correspond to global C variables. The code and data
areas are initialized directly from the contents of an executable object file,
in our case the he l lo executable. You will learn more about this part of the
address space when we study linking and loading in Chapter 7.
Heap. The code and data areas are followed imnlediately by the run-time
heap. Unlike the code and data areas, which are fixedinsize once the process
begins running, the heap expands and contracts dynamically at run time as a
result of calls to C standard library routines such as malloc and f ree . We

Section 1.7 The Operating System Manages the Hardware 17

Figure 1.13
Process virtual address
space.

oxffffffff, Memorv

0xc0000000
1 erne el virtual memow 1 imlsible to

user code
User stack

printf /) function

Readhvrite data
Loaded from the
he l lo executable f~le

Read-onty code and data

will study heaps in detail when we learn about managing virtual memory in
Chapter 10.

r Shared libraries. Near the middle of the address space is an area that holds
the code and data for shared libraries such as the C standard library and the
math library. The notion of a shared library is a powerful. but somewhat
diflicult concept. You will learn how they work when we study dynamic
linking in Chapter 7.

r Stack. At the top of the user's virtual address space is the user stack that
the compiler uses to implement function calls. Like the heap, the user stack
expands and contracts dynamically during the execution of the program. In
particular, each time we call a function, thestack grows. Each time we return
from a function, it contracts. You will learn how the compiler uses the stack
in Chapter 3.

r Kernel virtual memory. The kernel is the part of the operating system that
is always resident in memory. The top one-fourth of the address space is
reserved for the kernel. Application programs are not allowed to read or
write the contents of this area or to directly call functions defined in the
kernel code.

For virtual memory to work, a sophisticated interaction is required between the
hardware and the operating system software, including a hardware translation of
every address generated by the processor. The basic idea is to store the contents
of a process's virtual memory on disk, and then use the main memory as a cache

. for the disk. Chapter 10 explains how this works and why it is so important to the
operation of modern systems.

18 Chapter 1 A Tour of Computer Systems

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every 110 device,
including disks, keyboards, displays, and even networks, is modeled as a file. AU
input and output in the system is performed by reading and writing files, using a
small set of system calls known as Unix VO.

This simple and elegant notion of a file is nonetheless very powerful because
it provides applications with a uniform view of all of the varied U 0 devices that
might be contained in the system. For example, application programmers who
manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same program will run on different systems that use
different disk technologies. You will learn about Unix UO in Chapter 11.

Aside: The Linux project.

In August, 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using rninix -
I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu] for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on
things people likeldislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things) .
I've currently ported bash(l.08) and gcc(l.lO), and things seem to w
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them : -)

Linus (torvalds@kruuna.helsinki.fi)

The rest, as they say, is history. Linux has evolved into a technical and cultural phenomenon. By c
forces with the GNU project, the Linux project has developed a complete, Posix-compliant version of the
Unix operating system, including the kernel and all of the supporting infrastructure. Linux is available on
a wide array of computers, from hand-held devices to mainframe computers. A group at IBM has even
ported Linux to a wristwatch!

1.8 Systems Communicate With Other Systems Using Networks

Up to this point in our tour of systems, we have treated a system as an isolated
collection of hardware and software. In practice, modern systems are often linked
to other systems by netwofis. From the point of view of an individual system, the

Section 1.8 Systems Communicate With Other Systems Using Networks 19

Figure 1.14 CPU chio
A network is another
I10 device.

t Ex~ansion slots

[*B;J 1OlqDphbl I Hd;Ok,
controller ada ter controller @wPr

I I t
Mouse Keyboard Monitor

network can be viewed as just another 110 device, as shown in Figure 1.14. When
the system copies a sequence of bytes from main memory to the network adapter,
the data flows across the network to another machine, instead of, say, to a local
disk drive. Similarly, the system can read data sent from other machines and copy
this data to its main memory.

With the advent of global networks such as the Internet, copying information
from one machine to another has become one of the most important uses of
computer systems. For example, applications such as email, instant messaging, the
World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Returning to our hello example, we could use the familiar telnet application
to run hello on a remote machine. Suppose we use a telnet client running on our
local machine to connect to a telnet server on a remote machine. After we log in
to the remote machine and run a shell, the remote shell is waiting to receive an
input command. From this point, running the hello program remotely involves
the five basic steps shown in Figure 1.15.

1.User types 2. Client sends "hello"
"hel lo" at the string to telnet server 3. Server sends "hello"

keyboard string to the shell, which
telnet runs the he1 1 o program

and sends the output
to the telnet server

5. Client prints "he l lo , worldin" string
"hel lo , world\n" to client

string on display
.. ..

Figure 1.15 Using telnet to run hello remotely over a network.

20 Chapter 1 A Tour of Computer Systems

After we type the "he l lo" string to the telnet client and hit the e n t e r key,
the client sends the string to the telnet server. After the telnet server receives the
string from the network, it passes it along to the remote shellprogram. Next, the
remoteshellruns the h e l l o program, andpasses theoutput line backto the telnet
server. Finally, the telnet server forwards the output string across the network to
the telnet client, which prints the output string on our local terminal.

This type of exchange between clients and servers is typical of all network
applications. In Chapter 12 you will learn how to build network applications, and
apply this knowledge to build a simple Web server.

1.9 The Next Step

This concludes our initial whirlwind tour of systems. An important idea to take
away from this discussion is that a system is more than just hardware. It is a
collection of intertwined hardware and systems software that must cooperate in
order to achieve the ultimate goal of running application programs. The rest of
this book will expand on thls theme.

1.10 Summary

A computer system consists of hardware and systems software that cooperate
to run application programs. Information inside the computer is represented as
groups of bits that are interpreted in different ways, depending on the context.
Programs are translated by other programs into different forms, beginning as
ASCII text and then translated by compilers and linkers into binary executable
files.

Processors read and interpret binary instructions that are stored in main mem-
ory. Since computers spend most of their time copying data between memory, 110
devices, and the CPU registers, the storage devices in a system are arranged in a hi-
erarchy, with the CPU registers at the top, followed by multiple levels of hardware
cache memories, DRAM main memory, and disk storage. Storage devices that are
higher in the hierarchy are faster and more costly per bit than those lower in the
hierarchy. Storage devices that are higher in the hierarchy serve as caches for de-
vices that are lower in the hierarchy. Programmers can optimize the performance
of their C progranls by understanding and exploiting the memory hierarchy.

The operating system kernel serves an intermediary between the application
and the hardware. It provides three fundamental abstractions: (1) Files are ab-
stractions for I10 devices. (2) Virtual memory is an abstraction for both main
memory and disks. (3) Processes are abstractions for the processor, main mem-
ory, and 110 devices.

Finally, networks provideways for computer systems to communicate with one
another. From the viewpoint of a particular system, the network is just another
110 device.

Chapter 1 Bibliographics Notes 21

Bibliographics Notes

Ritchie has written interesting firsthand accounts of the early days of C and
Unix [63, 641. Ritchie and Thompson presented the first published account of
Unix [65]. Silberschatzand Gavin [70] provide acomprehensive history of the dif-
ferent flavors of Unix. The GNU (www. gnu. org) and Linux (www. linux. org)
Web pages have loads of current and historical information. Unfortunately, the
~osix-standards are not available online. They must be ordered for a fee from
IEEE (standards. ieee . org).

k~ 9-
I i Program Structure

d Execution
i
!

exploration of computer systems starts by studying the com-
puter itself comprising a processor and a memory subsystem.

the core, we require ways to represent basic data types, such,
as approximations to integer and real arithmetic. From there we can
consider how machine-level instructions manipulate this data and how a
compiler translates C programs into these instructions. Next, we study
several mcthods of implementing a processor to gain a better understand-
ing of how hardware resources are used to execute instructions. Once we
understand compilers and machine-level code, we can examine how to
maximize program performance by writing source code that will compile
efficiently. We conclude with the design of the memory subsystem, one
of the most complex components of a modem computer system.

Tnis part of the book will give you a deep understanding of how
application programs are represented and executed. You will gain skills
that help you write programs that are reliable and that make the best use

I ' of the computing resources. -.---- -,

